Comparative Antiviral Activity of Remdesivir and Anti-HIV Nucleoside Analogs Against Human Coronavirus 229E (HCoV-229E)

Keykavous Parang, Naglaa Salem El-Sayed, Assad J Kazeminy, Rakesh K Tiwari, Keykavous Parang, Naglaa Salem El-Sayed, Assad J Kazeminy, Rakesh K Tiwari

Abstract

Remdesivir is a nucleotide prodrug that is currently undergoing extensive clinical trials for the treatment of COVID-19. The prodrug is metabolized to its active triphosphate form and interferes with the action of RNA-dependent RNA polymerase of SARS-COV-2. Herein, we report the antiviral activity of remdesivir against human coronavirus 229E (HCoV-229E) compared to known anti-HIV agents. These agents included tenofovir (TFV), 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC), known as nucleoside reverse-transcriptase inhibitors (NRTIs), and a number of 5'-O-fatty acylated anti-HIV nucleoside conjugates. The anti-HIV nucleosides interfere with HIV RNA-dependent DNA polymerase and/or act as chain terminators. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. The study revealed that remdesivir exhibited an EC50 value of 0.07 µM against HCoV-229E with TC50 of > 2.00 µM against MRC-5 cells. Parent NRTIs were found to be inactive against (HCoV-229E) at tested concentrations. Among all the NRTIs and 5'-O-fatty acyl conjugates of NRTIs, 5'-O-tetradecanoyl ester conjugate of FTC showed modest activity with EC50 and TC50 values of 72.8 µM and 87.5 µM, respectively. These data can be used for the design of potential compounds against other coronaviruses.

Keywords: HCoV-229E; NRTIs; RNA polymerase; SARS-COV-2; antiviral; remdesivir.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of remdesivir, TFV, EFdA, FLT, 3TC, FTC, and fatty acyl ester analogs of FLT, 3TC, and FTC.
Figure 2
Figure 2
Antiviral activity and cytotoxicity of remdesivir (1) (EC50 (n = 3): 0.067 ± 0.012 µM, TC50 (n = 2): > 2 ± 0 µM, FTC (8): EC50 (n = 3) and TC50 (n = 2): > 100 µM and 5′-O-tetradecanoyl ester conjugate of FTC (9) (EC50 (n = 3): 72.8 ± 13.1 µM, TC50 (n = 2): 87.5 ± 1.34 µM against HCoV229E in MRC-5 cells. Viral cytopathic (VC) effect and MRC-5 cell cytotoxicity (CC) are shown in each graph.

References

    1. Lim Y.X., Ng Y.L., Tam J.P., Liu D.X. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016;4:26. doi: 10.3390/diseases4030026.
    1. Pene F., Merlat A., Vabret A., Rozenberg F., Buzyn A., Dreyfus F., Cariou A., Freymuth F., Lebon P. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis. 2003;37:929–932. doi: 10.1086/377612.
    1. Woo P.C., Lau S.K., Tsoi H.W., Huang Y., Poon R.W., Chu C.M., Lee R.A., Luk W.K., Wong G.K., Wong B.H., et al. Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J. Infect. Dis. 2005;192:1898–1907. doi: 10.1086/497151.
    1. Poutanen S.M. Human coronaviruses. Princ. Pract. Pediatric Infect. Dis. 2012;4:1117–1120.
    1. Vassilara F., Spyridaki A., Pothitos G., Deliveliotou A., Papadopoulos A. A Rare Case of Human Coronavirus 229E Associated with Acute Respiratory Distress Syndrome in a Healthy Adult. Case. Rep. Infect. Dis. 2018;2018:6796839. doi: 10.1155/2018/6796839.
    1. de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA. 2020;117:6771–6776. doi: 10.1073/pnas.1922083117.
    1. Sheahan T.P., Sims A.C., Graham R.L., Menachery V.D., Gralinski L.E., Case J.B., Leist S.R., Pyrc K., Feng J.Y., Trantcheva I., et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017;9:eaal3653. doi: 10.1126/scitranslmed.aal3653.
    1. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A., Feldt T., Green G., Green M.L., Lescure F.X., et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl. J. Med. 2020 doi: 10.1056/NEJMoa2007016.
    1. Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X., Smith E.C., Case J.B., Feng J.Y., Jordan R., et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9:e00221-18. doi: 10.1128/mBio.00221-18.
    1. Morse J.S., Lalonde T., Xu S., Liu W.R. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem. 2020;21:730–738. doi: 10.1002/cbic.202000047.
    1. Ko W.C., Rolain J.M., Lee N.Y., Chen P.L., Huang C.T., Lee P.I., Hsueh P.R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int. J. Antimicrob. Agents. 2020;55:105933. doi: 10.1016/j.ijantimicag.2020.105933.
    1. Brown A.J., Won J.J., Graham R.L., Dinnon K.H., 3rd, Sims A.C., Feng J.Y., Cihlar T., Denison M.R., Baric R.S., Sheahan T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral. Res. 2019;169:104541. doi: 10.1016/j.antiviral.2019.104541.
    1. Tzertzinis G., Tabor S., Nichols N.M. RNA-dependent DNA polymerases. Curr. Protoc. Mol. Biol. 2008;3:3–7. doi: 10.1002/0471142727.mb0307s84.
    1. Mulato A.S., Cherrington J.M. Anti-HIV activity of adefovir (PMEA) and PMPA in combination with antiretroviral compounds: In vitro analyses. Antiviral. Res. 1997;36:91–97. doi: 10.1016/S0166-3542(97)00043-0.
    1. Robbins B.L., Srinivas R.V., Kim C., Bischofberger N., Fridland A. Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxypropyl)adenine (PMPA), Bis(isopropyloxymethylcarbonyl)PMPA. Antimicrob. Agents. Chemother. 1998;42:612–617. doi: 10.1128/AAC.42.3.612.
    1. Ohrui H., Kohgo S., Hayakawa H., Kodama E., Matsuoka M., Nakata T., Mitsuya H. 2′-deoxy-4′-C-ethynyl-2-fluoroadenosine: A nucleoside reverse transcriptase inhibitor with highly potent activity against wide spectrum of HIV-1 strains, favorable toxic profiles, and stability in plasma. Nucleosides Nucleotides Nucleic Acids. 2007;26:1543–1546. doi: 10.1080/15257770701545218.
    1. Kageyama M., Miyagi T., Yoshida M., Nagasawa T., Ohrui H., Kuwahara S. Concise synthesis of the anti-HIV nucleoside EFdA. Biosci. Biotechnol. Biochem. 2012;76:1219–1225. doi: 10.1271/bbb.120134.
    1. Herdewijn P., Balzarini J., De Clercq E., Pauwels R., Baba M., Broder S., Vanderhaeghe H. 3′-substituted 2′,3′-dideoxynucleoside analogues as potential anti-HIV (HTLV-III/LAV) agents. J. Med. Chem. 1987;30:1270–1278. doi: 10.1021/jm00391a003.
    1. Parang K., Knaus E.E., Wiebe L.I. Synthesis, in vitro anti-HIV activity, and biological stability of 5′-O-myristoyl analogue derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT) as potential bifunctional prodrugs of FLT. Nucleosides Nucleotides. 1998;17:987–1008. doi: 10.1080/07328319808004216.
    1. Parang K., Wiebe L.I., Knaus E.E., Huang J.S., Tyrrell D.L. In vitro anti-hepatitis B virus activities of 5”-O-myristoyl analogue derivatives of 3”-fluoro-2”,3”-dideoxythymidine (FLT) and 3”-azido-2”,3”-dideoxythymidine (AZT) J Pharm Pharm Sci. 1998;1:108–114.
    1. Massard J., Benhamou Y. Treatment of chronic hepatitis B in HIV co-infected patients. Gastroenterol. Clin. Biol. 2008;32:S20–S24. doi: 10.1016/S0399-8320(08)73261-5.
    1. Saag M.S. Emtricitabine, a new antiretroviral agent with activity against HIV and hepatitis B virus. Clin. Infect. Dis. 2006;42:126131.
    1. Nelson M., Schiavone M. Emtricitabine (FTC) for the treatment of HIV infection. Int. J. Clin. Pract. 2004;58:504–510. doi: 10.1111/j.1368-5031.2004.00100.x.
    1. Agarwal H.K.D.G., Parang K. Synthesis and anti-HIV activities of phosphate triester derivatives of 3′-fluoro-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxythymidine. Tetrahedron Lett. 2008;49:4905–4907. doi: 10.1016/j.tetlet.2008.05.149.
    1. Agarwal H.K., Loethan K., Mandal D., Doncel G.F., Parang K. Synthesis and biological evaluation of fatty acyl ester derivatives of 2′,3′-didehydro-2′,3′-dideoxythymidine. Bioorg. Med. Chem. Lett. 2011;21:19171721. doi: 10.1016/j.bmcl.2011.02.070.
    1. Agarwal H.K., Chhikara B.S., Hanley M.J., Ye G., Doncel G.F., Parang K. Synthesis and biological evaluation of fatty acyl ester derivatives of (-)-2′,3′-dideoxy-3′-thiacytidine. J. Med. Chem. 2012;55:4861–4871. doi: 10.1021/jm300492q.
    1. Agarwal H.K., Chhikara B.S., Bhavaraju S., Mandal D., Doncel G.F., Parang K. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake. Mol. Pharm. 2013;10:467–476. doi: 10.1021/mp300361a.
    1. Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020;368:779–782. doi: 10.1126/science.abb7498.

Source: PubMed

3
Sottoscrivi