Ciprofloxacin for contacts of cases of meningococcal meningitis as an epidemic response: study protocol for a cluster-randomized trial

Matthew E Coldiron, Gabriel Alcoba, Iza Ciglenecki, Matt Hitchings, Ali Djibo, Anne-Laure Page, Celine Langendorf, Rebecca F Grais, Matthew E Coldiron, Gabriel Alcoba, Iza Ciglenecki, Matt Hitchings, Ali Djibo, Anne-Laure Page, Celine Langendorf, Rebecca F Grais

Abstract

Background: Epidemics of meningococcal meningitis are common in the "African meningitis belt." Current response strategies include reactive vaccination campaigns, which are often organized too late to have maximal impact. A novel strain of Neisseria meningitidis serogroup C has been circulating in recent years, and vaccine supplies are limited. An evaluation of chemoprophylaxis with single-dose ciprofloxacin for household contacts of meningitis cases has therefore been recommended.

Methods/design: A three-arm cluster-randomized trial has been designed for implementation during a meningococcal meningitis epidemic in a health district in Niger in which at least two Health Zones (HZs) have met the weekly epidemic threshold. The primary outcome is the incidence (attack rate) of meningitis during the epidemic. Villages will be randomized in a 1:1:1 ratio to one of three different arms: standard care, household-level prophylaxis, or village-wide prophylaxis. After study launch, when a case of meningococcal meningitis is identified in an HZ, the first reported case from a village will trigger the inclusion and randomization of the village. Household-level prophylaxis with single-dose ciprofloxacin will be offered in the home to all household members within 24 hours of the notification of the case, and village-wide distributions will occur within 72 hours of the notification of the case. The sample size necessary to detect differences between each of the two intervention arms and the standard care arm will be set after 4 weeks of data collection, in order to quantify multiple variables that could be particular to a given area. The primary analysis will compare attack rates at the end of the epidemic in each of the three arms. A nested sub-study will assess the effects of ciprofloxacin prophylaxis on the prevalence of ciprofloxacin-resistant enterobacteriaceae. A total of 200 participants in the standard care arm and 200 in the village-wide prophylaxis arm will provide stool samples at days 0, 7, and 28 following their village's inclusion in the study.

Discussion: An innovative trial is proposed for implementation during an epidemic that will assess the impact of a novel strategy for meningitis outbreak response. In parallel, we will describe potential negative effects of the intervention.

Trial registration: ClinicalTrials.gov, NCT02724046 . Registered on 15 March 2016. Last updated on 13 June 2017.

Keywords: Ciprofloxacin; Drug resistance, bacterial; Epidemics; Meningitis, meningococcal; Neisseria meningitidis; Niger.

Figures

Fig. 1
Fig. 1
SPIRIT figure

References

    1. Greenwood BM. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg. 1999;43:341–53. doi: 10.1016/S0035-9203(99)90106-2.
    1. Molesworth AM, Thomson MC, Connor SJ, Cresswell MP, Morse AP, Shears P, Hart CA, Cuevas LE. Where is the meningitis belt? Defining an area at risk of epidemic meningitis in Africa. Trans R Soc Trop Med Hyg. 2002;96:242–9. doi: 10.1016/S0035-9203(02)90089-1.
    1. Lapeyssonnie L. La méningite cérébrospinale en Afrique. Bull. WHO. 1963;28:53–114.
    1. Diomandé FVK, Djingarey MH, Daugla DM, Novak RT, Kristiansen PA, Collard JM, Gamougam K, Kandolo D, Mbakuliyemo N, Mayer L, Stuart J, Clark T, Tevi-Benissan C, Perea WA, Preziosi MP, La Force FM, Caugant D, Messonnier N, Walker O, Greenwood B. Public health impact after the introduction of PsA-TT: the first 4 years. Clin Infect Dis. 2015;61(Suppl 5):S467–72. doi: 10.1093/cid/civ499.
    1. Gamougam K, Daugla DM, Toralta J, Ngadoua C, Fermon F, Page AL, Djingarey MH, Caugant DA, Manigart O, Trotter CL, Stuart JM, Greenwood BM. Continuing effectiveness of serogroup A meningococcal conjugate vaccine, Chad, 2013. Emerg Infect Dis. 2015;21:115–8. doi: 10.3201/eid2101.140256.
    1. Kristiansen PA, Diomandé F, Ba AK, Sanou I, Ouédraogo AS, Ouédraogo R, Sangaré L, Kandolo D, Aké F, Saga IM, Clark TA, Misegades L, Martin SW, Thomas JD, Tiendrebeogo SR, Hassan-King M, Djingarey MH, Messonnier NE, Préziosi MP, Laforce FM, Caugant DA. Impact of the serogroup A meningococcal conjugate vaccine, MenAfriVac, on carriage and herd immunity. Clin Infect Dis. 2013;56:354–63. doi: 10.1093/cid/cis892.
    1. Funk A, Uadiale K, Kamau C, Caugant DA, Ango U, Greig J. Sequential outbreaks due to a new strain of Neisseria meningitidis serogroup C in Northern Nigeria, 2013-14. PLOS Curr Outbreaks. 2014;6. doi: 10.1371/currents.outbreaks.b50c2aaf1032b3ccade0fca0b63ee518.
    1. Kretz CB, Retchless AC, Sidikou F, Issaka B, Ousmane S, Schwartz S, Tate AH, Pana A, Njanpop-Lafourcade B-M, Nzeyimana I, Nse RO, Deghmane A-E, Hong E, Brynildsrud OB, Novak RT, Meyer SA, Oukem-Boyer OOM, Ronveaux O, Caugant DA, Taha M-K, Wang X. Whole-genome characterization of epidemic Neisseria meningitidis serogroup C and resurgence of serogroup W, Niger, 2015. Emerg Infect Dis. 2016;22:1762–8. doi: 10.3201/eid2210.160468.
    1. World Health Organization. Serogroup C in the meningitis belt: facing the challenge. Report of meeting held in Geneva, October 2015. 2015. p. 1–10.
    1. Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007;369:2196–210. doi: 10.1016/S0140-6736(07)61016-2.
    1. Ferrari MJ, Fermon F, Nackers F, Llosa A, Magone C, Grais RF. Time is (still) of the essence: quantifying the impact of emergency meningitis vaccination response in Katsina State, Nigeria. Int Health. 2014;6:282–90. doi: 10.1093/inthealth/ihu062.
    1. Trotter CL, Cibrelus L, Fernandez K, Lingani C, Ronveaux O, Stuart JM. Response thresholds for epidemic meningitis in sub-Saharan Africa following the introduction of MenAfriVac®. Vaccine. 2015;33:6212–7. doi: 10.1016/j.vaccine.2015.09.107.
    1. Zalmanovici Trestioreanu A, Fraser A, Gafter-Gvili A, Paul M, Leibovici L. Antibiotics for preventing meningococcal infections. Cochrane Database Syst Rev. 2013;10:CD004785.
    1. World Health Organization . Meningitis outbreak response in sub-Saharan Africa: WHO guideline. Geneva: WHO; 2014.
    1. Coldiron ME, Salou H, Sidikou F, Goumbi K, Djibo A, Lechevalier P, Compaoré I, Grais RF. Case-fatality rates and sequelae resulting from Neisseria meningitidis serogroup C epidemic, Niger, 2015. Emerg Infect Dis. 2016;22:1827–9. doi: 10.3201/eid2210.160731.
    1. Telisinghe L, Waite TD, Gobin M, Ronveaux O, Fernandez K, Stuart JM, Scholten RJPM. Chemoprophylaxis and vaccination in preventing subsequent cases of meningococcal disease in household contacts of a case of meningococcal disease: a systematic review. Epidemiol Infect. 2015;143:2259–68. doi: 10.1017/S0950268815000849.
    1. Churchyard GJ, Fielding KL, Lewis JJ, Coetzee L, Corbett EL, Godfrey-Faussett P, Hayes RJ, Chaisson RE, Grant AD, Thibela TBST. A trial of mass isoniazid preventive therapy for tuberculosis control. N Engl J Med. 2014;370:301–10. doi: 10.1056/NEJMoa1214289.
    1. Doherty T, Tabana H, Jackson D, Naik R, Zembe W, Lombard C, Swanevelder S, Fox MP, Thorson A, Ekström AM, Chopra M. Effect of home based HIV counselling and testing intervention in rural South Africa: cluster randomised trial. BMJ. 2013;346:f3481. doi: 10.1136/bmj.f3481.
    1. Ansah EK, Narh-Bana S, Affran-Bonful H, Bart-Plange C, Cundill B, Gyapong M, Whitty CJM. The impact of providing rapid diagnostic malaria tests on fever management in the private retail sector in Ghana: a cluster randomized trial. BMJ. 2015;350:h1019. doi: 10.1136/bmj.h1019.
    1. Isanaka S, Nombela N, Djibo A, Poupard M, Van Beckhoven D, Gaboulaud V, Guerin PJ, Grais RF. Effect of preventive supplementation with ready-to-use therapeutic food on the nutritional status, mortality, and morbidity of children aged 6 to 60 months in Niger: a cluster randomized trial. JAMA. 2009;301:277–85. doi: 10.1001/jama.2008.1018.
    1. Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. Int J Epidemiol. 2006;35(August):1292–300. doi: 10.1093/ije/dyl129.
    1. Donner A, Klar N. Statistical considerations in the design and analysis of community intervention trials. J Clin Epidemiol. 1996;49:435–9. doi: 10.1016/0895-4356(95)00511-0.
    1. Rutterford C, Copas A, Eldridge S. Methods for sample size determination in cluster randomized trials. Int J Epidemiol. 2015;44:1051–67. doi: 10.1093/ije/dyv113.
    1. European Committee for Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1, 2017. .
    1. Halloran ME, Struchiner CJ. Study designs for dependent happenings. Epidemiology. 1991;2:331–8. doi: 10.1097/00001648-199109000-00004.
    1. Liu H, Wu T. Sample size calculation and power analysis of time-averaged difference. J Mod Appl Stat Methods. 2005;4:434–45. doi: 10.22237/jmasm/1130803680.
    1. Lake S, Kammann E, Klar N, Betensky R. Sample size re-estimation in cluster randomization trials. Stat Med. 2002;21:1337–50. doi: 10.1002/sim.1121.
    1. Weijer C, Grimshaw JM, Eccles MP, McRae AD, White A, Brehaut JC, Taljaard M, Campbell M, Piaggio G, Elbourne D, Altman D, Isaakidis P, Ioannidis J, Edwards S, Braunholtz D, Lilford R, Stevens A, Hutton J, Eldridge S, Ashby D, Feder G, Mann H, Reyes M, Sim J, Dawson A, Taljaard M, Weijer C, Grimshaw J, Brown JB, Binik A, et al. The Ottawa Statement on the Ethical Design and Conduct of Cluster Randomized Trials. PLoS Med. 2012;9:e1001346. doi: 10.1371/journal.pmed.1001346.
    1. Sim J, Dawson A. Informed consent and cluster-randomized trials. Am J Public Health. 2012;102:480–5. doi: 10.2105/AJPH.2011.300389.

Source: PubMed

3
Sottoscrivi