Effects of Pirfenidone and Collagen-Polyvinylpyrrolidone on Macroscopic and Microscopic Changes, TGF- β 1 Expression, and Collagen Deposition in an Experimental Model of Tracheal Wound Healing

J Raúl Olmos-Zuñiga, Mariana Silva-Martínez, Rogelio Jasso-Victoria, Matilde Baltazares-Lipp, Claudia Hernández-Jiménez, Ivette Buendía-Roldan, Jazmin Jasso-Arenas, Alan Martínez-Salas, Jazmin Calyeca-Gómez, Axel E Guzmán-Cedillo, Miguel Gaxiola-Gaxiola, Laura Romero-Romero, J Raúl Olmos-Zuñiga, Mariana Silva-Martínez, Rogelio Jasso-Victoria, Matilde Baltazares-Lipp, Claudia Hernández-Jiménez, Ivette Buendía-Roldan, Jazmin Jasso-Arenas, Alan Martínez-Salas, Jazmin Calyeca-Gómez, Axel E Guzmán-Cedillo, Miguel Gaxiola-Gaxiola, Laura Romero-Romero

Abstract

Tracheal stenosis (TS) is a fibrosis originated by prolonged inflammation and increased transforming growth factor beta 1 (TGF-β1) expression and collagen deposition (CD) in the tracheal wound. Several wound-healing modulators (WHMs) have been used to modulate the tracheal healing process and prevent TS, but they have failed, justifying the need to evaluate alternative WHM. The pirfenidone (PFD) and collagen-polyvinylpyrrolidone (Collagen-PVP) decrease inflammation and fibrosis. This study assessed the effect of PFD administration and Collagen-PVP topical application on macroscopic and microscopic changes, TGF-β1 expression, and CD in an experimental model of tracheal wound healing. Forty Wistar rats underwent cervical tracheoplasty, were divided into 4 groups (n = 10), and were treated with different WHM: group I, saline solution (SS); group II, Collagen-PVP; group III, mitomycin C (MMC); and group IV, 40 mg/kg PFD. Four weeks after surgery, the macroscopic and microscopic changes, in situ TGF-β1 expression, and CD in posttracheoplasty scars were evaluated. The animals treated with Collagen-PVP and PFD developed less inflammation and fibrosis than animals in the other study groups (p < 0.05, Kruskal-Wallis) and, moreover, showed lower TGF-β1 expression and CD than animals in group I (p < 0.05, ANOVA and Tukey's test). In conclusion, PFD and Collagen-PVP decrease inflammation, fibrosis, TGFβ-1 expression, and CD in the posttracheoplasty rats' scar.

Figures

Figure 1
Figure 1
Tracheal wound healing and lumen diameter at the end of the study. (a) Normal wound healing and minimal tracheal lumen decrease in an animal from the SS group. Normal wound healing without stenosis in the group treated with Collagen-PVP (b) and PFD (d). (c) Fibrotic scarring and decreased tracheal lumen in a euthanized animal from group III.
Figure 2
Figure 2
Micrograph of tracheal wound healing stained with Masson's trichrome (40x magnification). (a) Moderate inflammation and moderate amount of disorganized, thick collagen fibers in group I. (b) Mild inflammation and minimal number of organized, thick collagen fibers in the Collagen-PVP group. (c) Moderate inflammation and fibrosis with a moderate amount of disorganized, thin collagen fibers in animals from group III. (d) Tracheal wound free of inflammation and few organized, thin collagen fibers in the group treated with PFD.
Figure 3
Figure 3
Photomicrographs of immunohistochemical detection of TGF-β1 in tracheal scar (40x), showing strong TGF-β1 expression (dark brown immunostaining) in the SS (a) and MMC (c) groups, in contrast to weak TGF-β1 expression (light brown immunostaining) in animals treated with Collagen-PVP (b) and PFD (d).
Figure 4
Figure 4
Amount of collagen formed per mg of tracheal tissue in each group, 28 days after tracheal surgery, and a comparison among groups. Each bar represents the mean ± EE of the collagen concentration in the tracheal tissue for each study group; p < 0.05 (ANOVA and Tukey's test) showing the reduced collagen depositions observed in the PFD group versus the SS group. X-±SE. p < 0.05 ANOVA, Tukey's test, PFD versus SS.

References

    1. Krötzsch-Gómez F. E., Furuzawa-Carballeda J., Reyes-Márquez R., Quiróz-Hernández E., Díaz de León L. Cytokine expression is downregulated by collagen-polyvinylpyrrolidone in hypertrophic scars. The Journal of Investigative Dermatology. 1998;111(5):828–834. doi: 10.1046/j.1523-1747.1998.00329.x.
    1. Rodriguez-Calderón R., Furuzawa-Carballeda J., Corchado A., Krötzsch E. Collagen–polyvinylpyrrolidone promotes human wound healing through cytokine downmodulation. Wound Repair and Regeneration. 2001;9:p. 166.
    1. Diegelmann R. F., Evans M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Frontiers in Bioscience. 2004;9:283–289. doi: 10.2741/1184.
    1. Penn J. W., Grobbelaar A. O., Rolfe K. J. The role of the TGF-β family in wound healing, burns and scarring: a review. International Journal of Burns and Trauma. 2012;2:18–28.
    1. Elicora A., Liman S. T., Yegin B. A., et al. Effect of locally applied transforming growth factor beta 3 on wound healing and stenosis development in tracheal surgery. Respiratory Care. 2014;59(8):1281–1286. doi: 10.4187/respcare.02357.
    1. Ferguson M. W. J., O'Kane S. Scar-free healing: from embryonic mechanism to adult therapeutic intervention. Philosophical Transactions of the Royal Society B: Biological Sciences. 2004;359(1445):839–850. doi: 10.1098/rstb.2004.1475.
    1. Hirshoren N., Eliashar R. Wound-healing modulation in upper airway stenosis-myths and facts. Head and Neck. 2009;31(1):111–126. doi: 10.1002/hed.20925.
    1. Roh J.-L., Kim D. H., Rha K. S., Sung M.-W., Kim K. H., Park C. I. Benefits and risks of mitomycin use in the traumatized tracheal mucosa. Otolaryngology—Head and Neck Surgery. 2007;136(3):459–463. doi: 10.1016/j.otohns.2006.09.012.
    1. Rahbar R., Shapshay S. M., Healy G. B. Mitomycin: effects on laryngeal and tracheal stenosis, benefits and complications. Annals of Otology, Rhinology & Laryngology. 2001;110:1–6. doi: 10.1177/000348940111000101.
    1. Olmos-Zúñiga J. R., Hernández-Jiménez C., Díaz-Martínez E., et al. Wound healing modulators in a tracheoplasty canine model. Journal of Investigative Surgery. 2007;20(6):333–338. doi: 10.1080/08941930701772140.
    1. Macías-Barragán J., Sandoval-Rodríguez A., Navarro-Partida J., Armendáriz-Borunda J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair. 2010;3, article 16 doi: 10.1186/1755-1536-3-16.
    1. Selman M., Navarro C., Gaxiola M. Idiopathic pulmonary fibrosis: in search of an effective treatment. Archivos de Bronconeumología. 2005;41(supplement 5):15–20. doi: 10.1016/S0300-2896(05)70763-8.
    1. Shetlar M. R., Shetlar D. J., Bloom R. F., Shetlar C. L., Margolin S. B. Involution of keloid implants in athymic mice treated with pirfenidone or with triamcinolone. Journal of Laboratory and Clinical Medicine. 1998;132(6):491–496. doi: 10.1016/S0022-2143(98)90127-5.
    1. Estados Unidos Mexicanos. AFÍA. Especificaciones Técnicas para la Producción, Cuidado y Uso de Animales de Laboratorio de la Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación 6 dic, 1999.
    1. National Institutes of Health U. S. A. Guía Para el Cuidado y Uso de Los Animales de Laboratorio. Department of Health and Human Services. México, D.F., Mexico: National Institutes of Health U.S.A. Mexican edition Sponsored by the National Academy of Medicine; 2002.
    1. Oku H., Shimizu T., Kawabata T., et al. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. European Journal of Pharmacology. 2008;590(1–3):400–408. doi: 10.1016/j.ejphar.2008.06.046.
    1. Varghese F., Bukhari A. B., Malhotra R., De A. IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0096801.e96801
    1. Munguía A. Comparison of two methods for determining the content of collagen in mouse lung [M.S. thesis] Facultad de Ciencias, UNAM: 2007.
    1. Spond J., Case N., Chapman R. W., et al. Inhibition of experimental acute pulmonary inflammation by pirfenidone. Pulmonary Pharmacology and Therapeutics. 2003;16(4):207–214. doi: 10.1016/S1094-5539(03)00026-9.
    1. Iñiguez-Cuadra R., San Martín Prieto J., Iñiguez-Cuadra M., et al. Effect of mitomycin in the surgical treatment of tracheal stenosis. Archives of Otolaryngology—Head and Neck Surgery. 2008;134(7):709–714. doi: 10.1001/archotol.134.7.709.
    1. Chang S.-W. Early corneal edema following topical application of mitomycin-C. Journal of Cataract and Refractive Surgery. 2004;30(8):1742–1750. doi: 10.1016/j.jcrs.2003.12.044.
    1. Zhao X.-Y., Zeng X., Li X.-M., Wang T.-L., Wang B.-E. Pirfenidone inhibits carbon tetrachloride- and albumin complex-induced liver fibrosis in rodents by preventing activation of hepatic stellate cells. Clinical and Experimental Pharmacology and Physiology. 2009;36(10):963–968. doi: 10.1111/j.1440-1681.2009.05194.x.
    1. Solís N. Effect of different healing modulators on the expression of metalloproteinase 9 in tracheoplasty healing in dogs [M.S. thesis] Faculty of Veterinary Medicine, UNAM: 2014.
    1. Zhou H., Latham C. W., Zander D. S., Margolin S. B., Visner G. A. Pirfenidone inhibits obliterative airway disease in mouse tracheal allografts. Journal of Heart and Lung Transplantation. 2005;24(10):1577–1585. doi: 10.1016/j.healun.2004.11.002.
    1. Bazán-Perkins B., Campos M. G., Sánchez-Guerrero E. Polymerized type I collagen reverts airway hyperresponsiveness and fibrosis in a guinea pig asthma model. In: Khatami M., editor. Inflammatory Diseases 2. 2011.
    1. Furuzawa-Carballeda J., Rojas E., Valverde M., Castillo I., Diaz de Leon L., Krötzsch E. Cellular and humoral responses to collagen-polyvinylpyrrolidone administered during short and long periods in humans. Canadian Journal of Physiology and Pharmacology. 2003;81(11):1029–1035. doi: 10.1139/y03-101.
    1. Iyer S. N., Gurujeyalakshmi G., Giri S. N. Effects of pirfenidone on transforming growth factor-β gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. Journal of Pharmacology and Experimental Therapeutics. 1999;291(1):367–373.
    1. Takakuta K., Fujimori A., Chikanishi T., et al. Renoprotective properties of pirfenidone in subtotally nephrectomized rats. European Journal of Pharmacology. 2010;629(1–3):118–124. doi: 10.1016/j.ejphar.2009.12.011.
    1. Tsirogianni A. K., Moutsopoulos N. M., Moutsopoulos H. M. Wound healing: immunological aspects. Injury. 2006;37(1):S5–S12. doi: 10.1016/j.injury.2006.02.035.
    1. Koh T. J., DiPietro L. A. Inflammation and wound healing: the role of the macrophage. Expert Reviews in Molecular Medicine. 2011;13, article e23 doi: 10.1017/S1462399411001943.
    1. Furuzawa-Carballeda J., Krötzsch E., Barile-Fabris L., Alcalá M., Espinosa-Morales R. Subcutaneous administration of collagen-polyvinylpyrrolidone down regulates IL-1β, TNF-α, TGF-β1, ELAM-1 and VCAM-1 expression in scleroderma skin lesions. Clinical and Experimental Dermatology. 2005;30(1):83–86. doi: 10.1111/j.1365-2230.2004.01691.x.
    1. Zhong H., Sun G., Lin X., Wu K., Yu M. Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Investigative Ophthalmology and Visual Science. 2011;52(6):3136–3142. doi: 10.1167/iovs.10-6240.
    1. Eliashar R., Eliachar I., Esclamado R., Gramlich T., Strome M. Mitomycin prevent laryngotracheal stenosis? Laryngoscope. 1999;109(10):1594–1600. doi: 10.1097/00005537-199910000-00009.
    1. Su C., Sui T., Zhang X., Zhang H., Cao X. Effect of topical application of mitomycin-C on wound healing in a postlaminectomy rat model: an experimental study. European Journal of Pharmacology. 2011;674(1):7–12. doi: 10.1016/j.ejphar.2011.10.028.
    1. Wang Y.-W., Ren J.-H., Xia K., et al. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study. Journal of Zhejiang University: Science B. 2012;13(12):997–1005. doi: 10.1631/jzus.B1200055.

Source: PubMed

3
Sottoscrivi