Zebrafish Avatars towards Personalized Medicine-A Comparative Review between Avatar Models

Bruna Costa, Marta F Estrada, Raquel V Mendes, Rita Fior, Bruna Costa, Marta F Estrada, Raquel V Mendes, Rita Fior

Abstract

Cancer frequency and prevalence have been increasing in the past decades, with devastating impacts on patients and their families. Despite the great advances in targeted approaches, there is still a lack of methods to predict individual patient responses, and therefore treatments are tailored according to average response rates. "Omics" approaches are used for patient stratification and choice of therapeutic options towards a more precise medicine. These methods, however, do not consider all genetic and non-genetic dynamic interactions that occur upon drug treatment. Therefore, the need to directly challenge patient cells in a personalized manner remains. The present review addresses the state of the art of patient-derived invitro and invivo models, from organoids to mouse and zebrafish Avatars. The predictive power of each model based on the retrospective correlation with the patient clinical outcome will be considered. Finally, the review is focused on the emerging zebrafish Avatars and their unique characteristics allowing a fast analysis of local and systemic effects of drug treatments at the single-cell level. We also address the technical challenges that the field has yet to overcome.

Keywords: Avatars; PDX; cancer; personalized medicine; tumor microenvironment; zebrafish.

Conflict of interest statement

The authors declare no conflict of interest and nothing to disclose.

Figures

Figure 1
Figure 1
Patient-derived Avatars. Patient-derived cells are used to generate in vitro and in vivo Avatars. In vitro models include spheroids from dissociated tissue; explants, that are not dissociated and retain the original tissue architecture; and organoids, derived from adult stem cells. In vivo models include genetically engineered drosophila flies that mimic patient mutations; and patient-derived mouse or zebrafish xenografts. Zebrafish can be used at the larval or adult stage.
Figure 2
Figure 2
Balance between pro- and anti-apoptotic proteins result in life-death decisions. (A) BIM and BID (activators) are known as the BH3-only proteins whose function is to induce the conformational changes of BAX and BAK (effectors) to produce the Mitochondrial Outer Membrane Permeabilization (MOMP), resulting in apoptosis. (B) Anti-apoptotic proteins like BCL-2, BCL-W, BCL-XL, BFL-1, and MCL-1, can bind to BH3-only proteins to prevent their interaction with BAX and BAK, thus preventing apoptosis. (C) Another class of proteins, which are pro-apoptotic or sensitizers (BAD, BIK, NOXA, HRK, BMF, and PUMA) cannot directly bind to BAX and BAK, but instead bind to anti-apoptotic proteins, preventing the interaction between these and the activators.
Figure 3
Figure 3
Experimental setup for generating mouse Patient-Derived Xenografts (mPDXs). The tumor is minced and transplanted either orthotopically or subcutaneously, embedded in matrigel. When the tumor reaches ~1 cm in diameter, it is excised and propagated into more mice (F2, F3) to obtain cohorts of Avatars where different therapies can be tested.
Figure 4
Figure 4
(A) Experimental setup for generating zebrafish xenografts. Cells derived from in vitro culture or primary human cells are labelled and microinjected in the PVS of 2dpf larvae. One day after injection, larvae are screened for successful injection and distributed in groups for testing chemo-, radio- and/or biological therapies. Three days after treatment, larvae (B) are fixed and processed for immunofluorescence for analysis of proliferation (C), cell death (D), angiogenesis (E), and metastatic potential (F,G). dpi: days post injection.
Figure 5
Figure 5
Comparison between patient-derived Avatar models.
Figure 6
Figure 6
Workflow of zebrafish Avatars in the context of personalized medicine.

References

    1. Bissell M.J., Hines W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 2011;17:320–329. doi: 10.1038/nm.2328.
    1. Wu X., Gu Z., Chen Y., Chen B., Chen W., Weng L., Liu X. Application of PD-1 Blockade in Cancer Immunotherapy. Comput. Struct. Biotechnol. J. 2019;17:661–674. doi: 10.1016/j.csbj.2019.03.006.
    1. El-Shami K., Nallapareddy S., Messersmith W. Early Diagnosis and Treatment of Cancer Series: Colorectal Cancer. WB Saunders; Philadelphia, PA, USA: 2011. Systemic therapy for colon cancer; pp. 167–183.
    1. Van Cutsem E., Cervantes A., Adam R., Sobrero A., Van Krieken J.H., Aderka D., Aranda Aguilar E., Bardelli A., Benson A., Bodoky G., et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016;27:1386–1422. doi: 10.1093/annonc/mdw235.
    1. Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A., Kinzler K.W. Cancer Genome Landscapes. Science. 2013;339:1546. doi: 10.1126/science.1235122.
    1. Almendro V., Marusyk A., Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu. Rev. Pathol. 2013;8:277–302. doi: 10.1146/annurev-pathol-020712-163923.
    1. Kreso A., O’Brien C.A., van Galen P., Gan O.I., Notta F., Brown A.M.K., Ng K., Ma J., Wienholds E., Dunant C., et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science. 2013;339:543–548. doi: 10.1126/science.1227670.
    1. Russnes H.G., Lingjaerde O.C., Borresen-Dale A.-L., Caldas C. Breast Cancer Molecular Stratification: From Intrinsic Subtypes to Integrative Clusters. Am. J. Pathol. 2017;187:2152–2162. doi: 10.1016/j.ajpath.2017.04.022.
    1. Arora K., Barbieri C.E. Molecular Subtypes of Prostate Cancer. Curr. Oncol. Rep. 2018;20:58. doi: 10.1007/s11912-018-0707-9.
    1. Guinney J., Dienstmann R., Wang X., de Reynies A., Schlicker A., Soneson C., Marisa L., Roepman P., Nyamundanda G., Angelino P., et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015;21:1350–1356. doi: 10.1038/nm.3967.
    1. Jia M., Dahlman-Wright K., Gustafsson J.-A. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29:557–568. doi: 10.1016/j.beem.2015.04.008.
    1. Le T., Gerber D.E. Newer-Generation EGFR Inhibitors in Lung Cancer: How Are They Best Used? Cancers. 2019;11:366. doi: 10.3390/cancers11030366.
    1. Lee J.K., Liu Z., Sa J.K., Shin S., Wang J., Bordyuh M., Cho H.J., Elliott O., Chu T., Choi S.W., et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet. 2018;50:1399–1411. doi: 10.1038/s41588-018-0209-6.
    1. Tiefenbacher A., Pirker R. EGFR Tyrosine Kinase Inhibitors as First-Line Therapy in Advanced EGFR Mutation-Positive Non-Small Cell Lung Cancer: Strategies to Improve Clinical Outcome. J. Thorac. Dis. 2017;9:4208–4211. doi: 10.21037/jtd.2017.10.02.
    1. Yeh W.-L., Shioda K., Coser K.R., Rivizzigno D., McSweeney K.R., Shioda T. Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor alpha protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS ONE. 2013;8:e60889. doi: 10.1371/journal.pone.0060889.
    1. Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet Lond. Engl. 2015;386:1341–1352. doi: 10.1016/S0140-6736(15)61074-1.
    1. Pernas S., Tolaney S.M. HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther. Adv. Med. Oncol. 2019;11:1758835919833519. doi: 10.1177/1758835919833519.
    1. Gunturu K.S., Woo Y., Beaubier N., Remotti H.E., Saif M.W. Gastric cancer and trastuzumab: First biologic therapy in gastric cancer. Ther. Adv. Med. Oncol. 2013;5:143–151. doi: 10.1177/1758834012469429.
    1. Bailey A.M., Mao Y., Zeng J., Holla V., Johnson A., Brusco L., Chen K., Mendelsohn J., Routbort M.J., Mills G.B., et al. Implementation of biomarker-driven cancer therapy: Existing tools and remaining gaps. Discov. Med. 2014;17:101–114.
    1. Hidalgo M., Amant F., Biankin A.V., Budinska E., Byrne A.T., Caldas C., Clarke R.B., de Jong S., Jonkers J., Maelandsmo G.M., et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013. doi: 10.1158/-14-0001.
    1. Burstein H.J., Mangu P.B., Somerfield M.R., Schrag D., Samson D., Holt L., Zelman D., Ajani J.A. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011;29:3328–3330. doi: 10.1200/JCO.2011.36.0354.
    1. Del Gaizo Moore V., Letai A. BH3 profiling–measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 2013;332:202–205. doi: 10.1016/j.canlet.2011.12.021.
    1. Montero J., Sarosiek K.A., DeAngelo J.D., Maertens O., Ryan J., Ercan D., Piao H., Horowitz N.S., Berkowitz R.S., Matulonis U., et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160:977–989. doi: 10.1016/j.cell.2015.01.042.
    1. Del Gaizo Moore V., Schlis K.D., Sallan S.E., Armstrong S.A., Letai A. BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood. 2008;111:2300–2309. doi: 10.1182/blood-2007-06-098012.
    1. Kenny P.A., Lee G.Y., Myers C.A., Neve R.M., Semeiks J.R., Spellman P.T., Lorenz K., Lee E.H., Barcellos-Hoff M.H., Petersen O.W., et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 2007;1:84–96. doi: 10.1016/j.molonc.2007.02.004.
    1. Do Amaral J.B., Rezende-Teixeira P., Freitas V.M., Machado-Santelli G.M. MCF-7 cells as a three-dimensional model for the study of human breast cancer. Tissue Eng. Part C Methods. 2011;17:1097–1107. doi: 10.1089/ten.tec.2011.0260.
    1. Santo V.E., Estrada M.F., Rebelo S.P., Abreu S., Silva I., Pinto C., Veloso S.C., Serra A.T., Boghaert E., Alves P.M., et al. Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J. Biotechnol. 2016;221:118–129. doi: 10.1016/j.jbiotec.2016.01.031.
    1. Zoetemelk M., Rausch M., Colin D.J., Dormond O., Nowak-Sliwinska P. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci. Rep. 2019;9:7103. doi: 10.1038/s41598-019-42836-0.
    1. Nguyen-Ngoc K.-V., Cheung K.J., Brenot A., Shamir E.R., Gray R.S., Hines W.C., Yaswen P., Werb Z., Ewald A.J. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc. Natl. Acad. Sci. USA. 2012;109:E2595–E2604. doi: 10.1073/pnas.1212834109.
    1. Khamis Z.I., Sahab Z.J., Sang Q.-X.A. Active roles of tumor stroma in breast cancer metastasis. Int. J. Breast Cancer. 2012;2012:574025. doi: 10.1155/2012/574025.
    1. Ostman A. The tumor microenvironment controls drug sensitivity. Nat. Med. 2012;18:1332–1334. doi: 10.1038/nm.2938.
    1. Miyoshi H., Maekawa H., Kakizaki F., Yamaura T., Kawada K., Sakai Y., Taketo M.M. An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget. 2018;9:21950–21964. doi: 10.18632/oncotarget.25134.
    1. Linxweiler J., Hammer M., Muhs S., Kohn M., Pryalukhin A., Veith C., Bohle R.M., Stockle M., Junker K., Saar M. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer. J. Cancer Res. Clin. Oncol. 2019;145:551–559. doi: 10.1007/s00432-018-2803-5.
    1. Shuford S., Wilhelm C., Rayner M., Elrod A., Millard M., Mattingly C., Lotstein A., Smith A.M., Guo Q.J., O’Donnell L., et al. Prospective Validation of an Ex Vivo, Patient-Derived 3D Spheroid Model for Response Predictions in Newly Diagnosed Ovarian Cancer. Sci. Rep. 2019;9:11153. doi: 10.1038/s41598-019-47578-7.
    1. Di Liello R., Ciaramella V., Barra G., Venditti M., Della Corte C.M., Papaccio F., Sparano F., Viscardi G., Iacovino M.L., Minucci S., et al. Ex vivo lung cancer spheroids resemble treatment response of a patient with NSCLC to chemotherapy and immunotherapy: Case report and translational study. ESMO Open. 2019;4:e000536. doi: 10.1136/esmoopen-2019-000536.
    1. Sivakumar R., Chan M., Shin J.S., Nishida-Aoki N., Kenerson H.L., Elemento O., Beltran H., Yeung R., Gujral T.S. Organotypic tumor slice cultures provide a versatile platform for immuno-oncology and drug discovery. OncoImmunology. 2019;8:e1670019. doi: 10.1080/2162402X.2019.1670019.
    1. Van de Merbel A.F., van der Horst G., van der Mark M.H., van Uhm J.I.M., van Gennep E.J., Kloen P., Beimers L., Pelger R.C.M., van der Pluijm G. An ex vivo Tissue Culture Model for the Assessment of Individualized Drug Responses in Prostate and Bladder Cancer. Front. Oncol. 2018;8:400. doi: 10.3389/fonc.2018.00400.
    1. Majumder B., Baraneedharan U., Thiyagarajan S., Radhakrishnan P., Narasimhan H., Dhandapani M., Brijwani N., Pinto D.D., Prasath A., Shanthappa B.U., et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 2015;6:6169. doi: 10.1038/ncomms7169.
    1. Muraro M.G., Muenst S., Mele V., Quagliata L., Iezzi G., Tzankov A., Weber W.P., Spagnoli G.C., Soysal S.D. Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments. Oncoimmunology. 2017;6:e1331798. doi: 10.1080/2162402X.2017.1331798.
    1. Jiang X., Seo Y.D., Chang J.H., Coveler A., Nigjeh E.N., Pan S., Jalikis F., Yeung R.S., Crispe I.N., Pillarisetty V.G. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 2017;6:e1333210. doi: 10.1080/2162402X.2017.1333210.
    1. Schutgens F., Rookmaaker M.B., Margaritis T., Rios A., Ammerlaan C., Jansen J., Gijzen L., Vormann M., Vonk A., Viveen M., et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 2019;37:303–313. doi: 10.1038/s41587-019-0048-8.
    1. Yang H., Sun L., Liu M., Mao Y. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterol. Rep. 2018;6:243–245. doi: 10.1093/gastro/goy040.
    1. Kopper O., de Witte C.J., Lohmussaar K., Valle-Inclan J.E., Hami N., Kester L., Balgobind A.V., Korving J., Proost N., Begthel H., et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019;25:838–849. doi: 10.1038/s41591-019-0422-6.
    1. Sachs N., de Ligt J., Kopper O., Gogola E., Bounova G., Weeber F., Balgobind A.V., Wind K., Gracanin A., Begthel H., et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373–386. doi: 10.1016/j.cell.2017.11.010.
    1. Karthaus W.R., Iaquinta P.J., Drost J., Gracanin A., van Boxtel R., Wongvipat J., Dowling C.M., Gao D., Begthel H., Sachs N., et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159:163–175. doi: 10.1016/j.cell.2014.08.017.
    1. Kim M., Mun H., Sung C.O., Cho E.J., Jeon H.-J., Chun S.-M., Jung D.J., Shin T.H., Jeong G.S., Kim D.K., et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 2019;10:3991. doi: 10.1038/s41467-019-11867-6.
    1. Van de Wetering M., Francies H.E., Francis J.M., Bounova G., Iorio F., Pronk A., van Houdt W., van Gorp J., Taylor-Weiner A., Kester L., et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–945. doi: 10.1016/j.cell.2015.03.053.
    1. Vlachogiannis G., Hedayat S., Vatsiou A., Jamin Y., Fernandez-Mateos J., Khan K., Lampis A., Eason K., Huntingford I., Burke R., et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–926. doi: 10.1126/science.aao2774.
    1. Ooft S.N., Weeber F., Dijkstra K.K., McLean C.M., Kaing S., van Werkhoven E., Schipper L., Hoes L., Vis D.J., van de Haar J., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 2019;11:eaay2574. doi: 10.1126/scitranslmed.aay2574.
    1. Neal J.T., Li X., Zhu J., Giangarra V., Grzeskowiak C.L., Ju J., Liu I.H., Chiou S.-H., Salahudeen A.A., Smith A.R., et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell. 2018;175:1972–1988. doi: 10.1016/j.cell.2018.11.021.
    1. Matchett K.B., Lynam-Lennon N., Watson R.W., Brown J.A.L. Advances in Precision Medicine: Tailoring Individualized Therapies. Cancers. 2017;9:146. doi: 10.3390/cancers9110146.
    1. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013;19:1423–1437. doi: 10.1038/nm.3394.
    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Koller D., Yu P., Pollock R.E. Patient- Derived Xenografts use in Cancer: A Review. Clin. Surg. 2016;1:1277.
    1. Bradford J.R., Wappett M., Beran G., Logie A., Delpuech O., Brown H., Boros J., Camp N.J., McEwen R., Mazzola A.M., et al. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Oncotarget. 2016;7:20773–20787. doi: 10.18632/oncotarget.8014.
    1. Chao C., Widen S.G., Wood T.G., Zatarain J.R., Johnson P., Gajjar A., Gomez G., Qiu S., Thompson J., Spratt H., et al. Patient-derived Xenografts from Colorectal Carcinoma: A Temporal and Hierarchical Study of Murine Stromal Cell Replacement. Anticancer Res. 2017;37:3405–3412.
    1. Sidani M., Wyckoff J., Xue C., Segall J.E., Condeelis J. Probing the microenvironment of mammary tumors using multiphoton microscopy. J. Mammary Gland Biol. Neoplasia. 2006;11:151–163. doi: 10.1007/s10911-006-9021-5.
    1. Linde N., Casanova-Acebes M., Sosa M.S., Mortha A., Rahman A., Farias E., Harper K., Tardio E., Reyes Torres I., Jones J., et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 2018;9:21. doi: 10.1038/s41467-017-02481-5.
    1. Psaila B., Lyden D. The metastatic niche: Adapting the foreign soil. Nat. Rev. Cancer. 2009;9:285–293. doi: 10.1038/nrc2621.
    1. Zitvogel L., Galluzzi L., Viaud S., Vetizou M., Daillere R., Merad M., Kroemer G. Cancer and the gut microbiota: An unexpected link. Sci. Transl. Med. 2015;7:271ps1. doi: 10.1126/scitranslmed.3010473.
    1. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016;16:582–598. doi: 10.1038/nrc.2016.73.
    1. Velez D.O., Tsui B., Goshia T., Chute C.L., Han A., Carter H., Fraley S.I. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 2017;8:1651. doi: 10.1038/s41467-017-01556-7.
    1. Chaudhuri O., Koshy S.T., Branco da Cunha C., Shin J.W., Verbeke C.S., Allison K.H. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 2014;13:970–978. doi: 10.1038/nmat4009.
    1. Munson J.M., Shieh A.C. Interstitial fluid flow in cancer: Implications for disease progression and treatment. Cancer Manag. Res. 2014;6:317–328. doi: 10.2147/CMAR.S65444.
    1. Cox T.R., Erler J.T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis. Model Mech. 2011;4:165–178. doi: 10.1242/dmm.004077.
    1. Padera T.P., Meijer E.F., Munn L.L. The Lymphatic System in Disease Processes and Cancer Progression. Annu. Rev. Biomed. Eng. 2016;18:125–158. doi: 10.1146/annurev-bioeng-112315-031200.
    1. Rennekamp A.J., Peterson R.T. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 2015;24:58–70. doi: 10.1016/j.cbpa.2014.10.025.
    1. Malaney P., Nicosia S.V., Davé V. One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Lett. 2014;344:1–12. doi: 10.1016/j.canlet.2013.10.010.
    1. Flanagan S.P. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 1966;8:295–309. doi: 10.1017/S0016672300010168.
    1. Rygaard J., Povlsen C.O. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol. Microbiol. Scand. 1969;77:758–760. doi: 10.1111/j.1699-0463.1969.tb04520.x.
    1. Mombaerts P., Iacomini J., Johnson R.S., Herrup K., Tonegawa S., Papaioannou V.E. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68:869–877. doi: 10.1016/0092-8674(92)90030-G.
    1. Shinkai Y., Rathbun G., Lam K.-P., Oltz E.M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A.M., et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68:855–867. doi: 10.1016/0092-8674(92)90029-C.
    1. Shultz L.D., Schweitzer P.A., Christianson S.W., Gott B., Schweitzer I.B., Tennent B., McKenna S., Mobraaten L., Rajan T.V., Greiner D.L. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 1995;154:180–191.
    1. Shultz L.D., Lyons B.L., Burzenski L.M., Gott B., Chen X., Chaleff S., Kotb M., Gillies S.D., King M., Mangada J., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 2005;174:6477–6489. doi: 10.4049/jimmunol.174.10.6477.
    1. Williams J.A. Using PDX for Preclinical Cancer Drug Discovery: The Evolving Field. J. Clin. Med. 2018;7:41. doi: 10.3390/jcm7030041.
    1. Vargas R., Gopal P., Kuzmishin G.B., DeBernardo R., Koyfman S.A., Jha B.K., Mian O.Y., Scott J., Adams D.J., Peacock C.D., et al. Case study: Patient-derived clear cell adenocarcinoma xenograft model longitudinally predicts treatment response. NPJ Precis. Oncol. 2018;2:14. doi: 10.1038/s41698-018-0060-3.
    1. Inoue T., Terada N., Kobayashi T., Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol. 2017;14:267–283. doi: 10.1038/nrurol.2017.19.
    1. Sflomos G., Dormoy V., Metsalu T., Jeitziner R., Battista L., Scabia V., Raffoul W., Delaloye J.-F., Treboux A., Fiche M., et al. A Preclinical Model for ERalpha-Positive Breast Cancer Points to the Epithelial Microenvironment as Determinant of Luminal Phenotype and Hormone Response. Cancer Cell. 2016;29:407–422. doi: 10.1016/j.ccell.2016.02.002.
    1. Fiche M., Scabia V., Aouad P., Battista L., Treboux A., Stravodimou A., Zaman K., Dormoy V., Ayyanan A., Sflomos G., et al. Intraductal patient-derived xenografts of estrogen receptor alpha-positive breast cancer recapitulate the histopathological spectrum and metastatic potential of human lesions. J. Pathol. 2019;247:287–292. doi: 10.1002/path.5200.
    1. Bertotti A., Migliardi G., Galimi F., Sassi F., Torti D., Isella C., Cora D., Di Nicolantonio F., Buscarino M., Petti C., et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1:508–523. doi: 10.1158/-11-0109.
    1. Gao H., Korn J.M., Ferretti S., Monahan J.E., Wang Y., Singh M., Zhang C., Schnell C., Yang G., Zhang Y., et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015;21:1318–1325. doi: 10.1038/nm.3954.
    1. Tentler J.J., Nallapareddy S., Tan A.C., Spreafico A., Pitts T.M., Morelli M.P., Selby H.M., Kachaeva M.I., Flanigan S.A., Kulikowski G.N., et al. Identification of predictive markers of response to the MEK1/2 inhibitor selumetinib (AZD6244) in K-ras-mutated colorectal cancer. Mol. Cancer Ther. 2010;9:3351–3362. doi: 10.1158/1535-7163.MCT-10-0376.
    1. Wong J.C., Tang G., Wu X., Liang C., Zhang Z., Guo L., Peng Z., Zhang W., Lin X., Wang Z., et al. Pharmacokinetic optimization of class-selective histone deacetylase inhibitors and identification of associated candidate predictive biomarkers of hepatocellular carcinoma tumor response. J. Med. Chem. 2012;55:8903–8925. doi: 10.1021/jm3011838.
    1. Corcoran R.B., Atreya C.E., Falchook G.S., Kwak E.L., Ryan D.P., Bendell J.C., Hamid O., Messersmith W.A., Daud A., Kurzrock R., et al. Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600–Mutant Colorectal Cancer. J. Clin. Oncol. 2015;33:4023–4031. doi: 10.1200/JCO.2015.63.2471.
    1. Kavuri S.M., Jain N., Galimi F., Cottino F., Leto S.M., Migliardi G., Searleman A.C., Shen W., Monsey J., Trusolino L., et al. HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 2015;5:832–841. doi: 10.1158/-14-1211.
    1. Kemper K., Krijgsman O., Cornelissen-Steijger P., Shahrabi A., Weeber F., Song J.-Y., Kuilman T., Vis D.J., Wessels L.F., Voest E.E., et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol. Med. 2015;7:1104–1118. doi: 10.15252/emmm.201404914.
    1. Kemper K., Krijgsman O., Kong X., Cornelissen-Steijger P., Shahrabi A., Weeber F., van der Velden D.L., Bleijerveld O.B., Kuilman T., Kluin R.J.C., et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263–277. doi: 10.1016/j.celrep.2016.05.064.
    1. Byrne A.T., Alferez D.G., Amant F., Annibali D., Arribas J., Biankin A.V., Bruna A., Budinska E., Caldas C., Chang D.K., et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer. 2017;17:254–268. doi: 10.1038/nrc.2016.140.
    1. Kim I.S., Heilmann S., Kansler E.R., Zhang Y., Zimmer M., Ratnakumar K., Bowman R.L., Simon-Vermot T., Fennell M., Garippa R., et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat. Commun. 2017;8:14343. doi: 10.1038/ncomms14343.
    1. Izumchenko E., Paz K., Ciznadija D., Sloma I., Katz A., Vasquez-Dunddel D., Ben-Zvi I., Stebbing J., McGuire W., Harris W., et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017;28:2595–2605. doi: 10.1093/annonc/mdx416.
    1. Owonikoko T.K., Zhang G., Kim H.S., Stinson R.M., Bechara R., Zhang C., Chen Z., Saba N.F., Pakkala S., Pillai R., et al. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J. Transl. Med. 2016;14:111. doi: 10.1186/s12967-016-0861-5.
    1. Frankel A.E., Eskiocak U., Gill J.G., Yuan S., Ramesh V., Froehlich T.W., Ahn C., Morrison S.J. Digoxin Plus Trametinib Therapy Achieves Disease Control in BRAF Wild-Type Metastatic Melanoma Patients. Neoplasia. 2017;19:255–260. doi: 10.1016/j.neo.2017.01.010.
    1. Harris A.L., Lee S.E., Dawson L.K., Marlow L.A., Edenfield B.H., Durham W.F., Flotte T.J., Thompson M., Small D.L., Synnott A.J., et al. Targeting the cyclin dependent kinase and retinoblastoma axis overcomes standard of care resistance in BRAF (V600E) -mutant melanoma. Oncotarget. 2018;9:10905–10919. doi: 10.18632/oncotarget.23649.
    1. Garralda E., Paz K., Lopez-Casas P.P., Jones S., Katz A., Kann L.M., Lopez-Rios F., Sarno F., Al-Shahrour F., Vasquez D., et al. Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:2476–2484. doi: 10.1158/1078-0432.CCR-13-3047.
    1. Stebbing J., Paz K., Schwartz G.K., Wexler L.H., Maki R., Pollock R.E., Morris R., Cohen R., Shankar A., Blackman G., et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 2014;120:2006–2015. doi: 10.1002/cncr.28696.
    1. Chia S., Low J.-L., Zhang X., Kwang X.-L., Chong F.-T., Sharma A., Bertrand D., Toh S.Y., Leong H.-S., Thangavelu M.T., et al. Phenotype-driven precision oncology as a guide for clinical decisions one patient at a time. Nat. Commun. 2017;8:435. doi: 10.1038/s41467-017-00451-5.
    1. Aguilar-Mahecha A., Joseph S., Cavallone L., Buchanan M., Krzemien U., Batist G., Basik M. Precision Medicine Tools to Guide Therapy and Monitor Response to Treatment in a HER-2+ Gastric Cancer Patient: Case Report. Front. Oncol. 2019;9:698. doi: 10.3389/fonc.2019.00698.
    1. Patton E.E., Zon L.I. The art and design of genetic screens: Zebrafish. Nat. Rev. Genet. 2001;2:956. doi: 10.1038/35103567.
    1. Renshaw S.A., Trede N.S. A model 450 million years in the making: Zebrafish and vertebrate immunity. Dis. Models Mech. 2012;5:38–47. doi: 10.1242/dmm.007138.
    1. Letrado P., de Miguel I., Lamberto I., Diez-Martinez R., Oyarzabal J. Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res. 2018;78:6048–6058. doi: 10.1158/0008-5472.CAN-18-1029.
    1. Kirchberger S., Sturtzel C., Pascoal S., Distel M. Quo natas, Danio?-Recent Progress in Modeling Cancer in Zebrafish. Front. Oncol. 2017;7:186. doi: 10.3389/fonc.2017.00186.
    1. Lee Y., Grill S., Sanchez A., Murphy-Ryan M., Poss K.D. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development. 2005;132:5173–5183. doi: 10.1242/dev.02101.
    1. Yan C., Brunson D.C., Tang Q., Do D., Iftimia N.A., Moore J.C., Hayes M.N., Welker A.M., Garcia E.G., Dubash T.D., et al. Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell. 2019;177:1903–1914. doi: 10.1016/j.cell.2019.04.004.
    1. Haldi M., Ton C., Seng W.L., McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9:139–151. doi: 10.1007/s10456-006-9040-2.
    1. Marques I.J., Weiss F.U., Vlecken D.H., Nitsche C., Bakkers J., Lagendijk A.K., Partecke L.I., Heidecke C.-D., Lerch M.M., Bagowski C.P. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer. 2009;9:128. doi: 10.1186/1471-2407-9-128.
    1. Fior R., Póvoa V., Mendes R.V., Carvalho T., Gomes A., Figueiredo N., Ferreira M.G. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl. Acad. Sci. USA. 2017;114:E8234–E8243. doi: 10.1073/pnas.1618389114.
    1. Stoletov K., Kato H., Zardouzian E., Kelber J., Yang J., Shattil S., Klemke R. Visualizing extravasation dynamics of metastatic tumor cells. J. Cell Sci. 2010;123:2332–2341. doi: 10.1242/jcs.069443.
    1. Nicoli S., Ribatti D., Cotelli F., Presta M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007;67:2927–2931. doi: 10.1158/0008-5472.CAN-06-4268.
    1. Zhao C., Wang X., Zhao Y., Li Z., Lin S., Wei Y., Yang H. A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS ONE. 2011;6:e21768. doi: 10.1371/journal.pone.0021768.
    1. Lee S.L.C., Rouhi P., Dahl Jensen L., Zhang D., Ji H., Hauptmann G., Ingham P., Cao Y. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc. Natl. Acad. Sci. USA. 2009;106:19485–19490. doi: 10.1073/pnas.0909228106.
    1. Van der Ent W., Jochemsen A.G., Teunisse A.F.A.S., Krens S.F.G., Szuhai K., Spaink H.P., Hogendoorn P.C.W., Snaar-Jagalska B.E. Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J. Pathol. 2014;233:415–424. doi: 10.1002/path.4378.
    1. Lin J., Zhang W., Zhao J.-J., Kwart A.H., Yang C., Ma D., Ren X., Tai Y.-T., Anderson K.C., Handin R.I., et al. A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood. 2016;128:249–252. doi: 10.1182/blood-2016-03-704460.
    1. Chapman A., Fernandez del Ama L., Ferguson J., Kamarashev J., Wellbrock C., Hurlstone A. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 2014;8:688–695. doi: 10.1016/j.celrep.2014.06.045.
    1. Chen X., Wang J., Cao Z., Hosaka K., Jensen L., Yang H., Sun Y., Zhuang R., Liu Y., Cao Y. Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model. Sci. Rep. 2015;5:10351. doi: 10.1038/srep10351.
    1. Gaudenzi G., Albertelli M., Dicitore A., Wurth R., Gatto F., Barbieri F., Cotelli F., Florio T., Ferone D., Persani L., et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. 2017;57:214–219. doi: 10.1007/s12020-016-1048-9.
    1. He S., Lamers G.E., Beenakker J.-W.M., Cui C., Ghotra V.P., Danen E.H., Meijer A.H., Spaink H.P., Snaar-Jagalska B.E. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 2012;227:431–445. doi: 10.1002/path.4013.
    1. Gnosa S., Capodanno A., Murthy R.V., Jensen L.D.E., Sun X.-F. AEG-1 knockdown in colon cancer cell lines inhibits radiation-enhanced migration and invasion in vitro and in a novel in vivo zebrafish model. Oncotarget. 2016;7:81634–81644. doi: 10.18632/oncotarget.13155.
    1. Costa B., Ferreira S., Povoa V., Cardoso M., Vieira S., Stroom J., Pares O., Rio-Tinto R., Fidalgo P., Figueiredo N., et al. Developments in Zebrafish avatars as radiotherapy sensitivity reporters – towards personalized medicine. EBiomedicine. 2019;16:102578. doi: 10.1016/j.ebiom.2019.11.039.
    1. Hidalgo M., Bruckheimer E., Rajeshkumar N.V., Garrido-Laguna I., De Oliveira E., Rubio-Viqueira B., Strawn S., Wick M.J., Martell J., Sidransky D. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 2011;10:1311–1316. doi: 10.1158/1535-7163.MCT-11-0233.
    1. White R.M., Sessa A., Burke C., Bowman T., LeBlanc J., Ceol C., Bourque C., Dovey M., Goessling W., Burns C.E., et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2:183–189. doi: 10.1016/j.stem.2007.11.002.
    1. White R., Rose K., Zon L. Zebrafish cancer: The state of the art and the path forward. Nat. Rev. Cancer. 2013;13:624–636. doi: 10.1038/nrc3589.
    1. Veinotte C.J., Dellaire G., Berman J.N. Hooking the big one: The potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis. Model Mech. 2014;7:745–754. doi: 10.1242/dmm.015784.
    1. Heilmann S., Ratnakumar K., Langdon E., Kansler E., Kim I., Campbell N.R., Perry E., McMahon A., Kaufman C., van Rooijen E., et al. A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res. 2015;75:4272–4282. doi: 10.1158/0008-5472.CAN-14-3319.
    1. Lawson N.D., Weinstein B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 2002;248:307–318. doi: 10.1006/dbio.2002.0711.
    1. Nguyen-Chi M., Laplace-Builhe B., Travnickova J., Luz-Crawford P., Tejedor G., Phan Q.T., Duroux-Richard I., Levraud J.-P., Kissa K., Lutfalla G., et al. Identification of polarized macrophage subsets in zebrafish. eLife. 2015;4:e07288. doi: 10.7554/eLife.07288.
    1. Roh-Johnson M., Shah A.N., Stonick J.A., Poudel K.R., Kargl J., Yang G.H., di Martino J., Hernandez R.E., Gast C.E., Zarour L.R., et al. Macrophage-Dependent Cytoplasmic Transfer during Melanoma Invasion In Vivo. Dev. Cell. 2017;43:549–562. doi: 10.1016/j.devcel.2017.11.003.
    1. Bentley V.L., Veinotte C.J., Corkery D.P., Pinder J.B., LeBlanc M.A., Bedard K., Weng A.P., Berman J.N., Dellaire G. Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica. 2015;100:70–76. doi: 10.3324/haematol.2014.110742.
    1. Astone M., Dankert E.N., Alam S.K., Hoeppner L.H. Fishing for cures: The alLURE of using zebrafish to develop precision oncology therapies. NPJ Precis. Oncol. 2017;1:39. doi: 10.1038/s41698-017-0043-9.
    1. Wu J.-Q., Zhai J., Li C.-Y., Tan A.-M., Wei P., Shen L.-Z., He M.-F. Patient-derived xenograft in zebrafish embryos: A new platform for translational research in gastric cancer. J. Exp. Clin. Cancer Res. 2017;36:160. doi: 10.1186/s13046-017-0631-0.
    1. Mercatali L., La Manna F., Groenewoud A., Casadei R., Recine F., Miserocchi G., Pieri F., Liverani C., Bongiovanni A., Spadazzi C., et al. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model. Int. J. Mol. Sci. 2016;17:1375. doi: 10.3390/ijms17081375.
    1. Fazio M., Zon L.I. Fishing for answers in precision cancer medicine. Proc. Natl. Acad. Sci. USA. 2017;114:10306–10308. doi: 10.1073/pnas.1713769114.
    1. Wang L., Chen H., Fei F., He X., Sun S., Lv K., Yu B., Long J., Wang X. Patient-derived Heterogeneous Xenograft Model of Pancreatic Cancer Using Zebrafish Larvae as Hosts for Comparative Drug Assessment. J. Vis. Exp. JoVE. 2019;30:146. doi: 10.3791/59507.
    1. Goldstone J.V., McArthur A.G., Kubota A., Zanette J., Parente T., Jonsson M.E., Nelson D.R., Stegeman J.J. Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genom. 2010;11:643. doi: 10.1186/1471-2164-11-643.
    1. Canella A., Welker A.M., Yoo J.Y., Xu J., Abbas F.S., Kesanakurti D., Nagarajan P., Beattie C.E., Sulman E.P., Liu J.L., et al. Efficacy of Onalespib a Long-acting Second Generation HSP90 Inhibitor as a Single Agent and in Combination with Temozolomide Against Malignant Gliomas. Clin. Cancer Res. 2017;23:6215–6226. doi: 10.1158/1078-0432.CCR-16-3151.
    1. Sant K.E., Timme-Laragy A.R. Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo. Curr. Environ. Health Rep. 2018;5:125–133. doi: 10.1007/s40572-018-0183-2.
    1. Pype C., Verbueken E., Saad M.A., Casteleyn C.R., Van Ginneken C.J., Knapen D., Van Cruchten S.J. Incubation at 32.5°C and above causes malformations in the zebrafish embryo. Reprod. Toxicol. 2015;56:56–63. doi: 10.1016/j.reprotox.2015.05.006.
    1. Bangi E., Ang C., Smibert P., Uzilov A.V., Teague A.G., Antipin Y., Chen R., Hecht C., Gruszczynski N., Yon W.J., et al. A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. Sci. Adv. 2019;5:eaav6528. doi: 10.1126/sciadv.aav6528.
    1. Chiu Y.-C., Chen H.-I.H., Zhang T., Zhang S., Gorthi A., Wang L.-J., Huang Y., Chen Y. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med. Genom. 2019;12:18
    1. Rockne R.C., Hawkins-Daarud A., Swanson K.R., Sluka J.P., Glazier J.A., Macklin P., Hormuth D.A., Jarrett A.M., Lima E.A.B.F., Tinsley Oden J., et al. The 2019 mathematical oncology roadmap. Phys. Biol. 2019;16:041005. doi: 10.1088/1478-3975/ab1a09.

Source: PubMed

3
Sottoscrivi