A Multicentre, Randomised, Double Blind, Parallel Design, Placebo Controlled Study to Evaluate the Efficacy and Safety of Uthever (NMN Supplement), an Orally Administered Supplementation in Middle Aged and Older Adults

Hao Huang, Hao Huang

Abstract

Objective: The purpose of the study was to evaluate the anti-aging effect of NMN and its safety in a double-blind, parallel, randomised controlled clinical trial. Methods: The study was carried out on 66 healthy subjects between the ages of 40 and65 years, instructed to take two capsules (each containing 150 mg. of NMN or starch powder) once a day after breakfast for 60 days. Results: At day 30, NAD+/NADH levels in the serum showed a noteworthy increase, i.e., by 11.3%, whereas the placebo group had shown no change at all. At the end of the study, i.e., day 60, the NAD+/NADH levels were increased further by 38% compared to baseline, against a mere 14.3% in the placebo group. In the case of SF 36, at day 60, the Uthever group showed a rise of 6.5%, whereas the placebo group was merely raised by 3.4%. At the end of the study, the mean HOMA IR Index showed a rise of 0.6% among the Uthever group and 30.6% among the Placebo group from baseline. Conclusion: The rise in the levels of NAD+/NADH at day 30 and day 60 illustrated the potential of Uthever to raise the levels of NAD+ in the cells, which is linked to higher energy levels and an anti-aging effect. Increased sensitivity to insulin has also been linked to anti-aging. There was no noteworthy change in HOMA score, in the Uthever group whereas there was a noteworthy rise in the placebo group, demonstrating the anti-aging effect of Uthever as in its absence, the parameters worsened. Clinical Trial Registration: (clinicaltrials.gov), identifier (NCT04228640 NMN).

Keywords: HOMA; NADH; NMN; SF-36; Uthever; anti-ageing; middle aged; randomised controlled trial.

Conflict of interest statement

Author HH was employed by Effepharm (Shanghai) Co., Ltd.

Copyright © 2022 Huang.

Figures

FIGURE 1
FIGURE 1
Flow diagram for subject distribution.

References

    1. Aman Y., Qiu Y., Tao J., Fang E. F. (2018). Therapeutic Potential of Boosting NAD+ in Aging and Age-Related Diseases. Translational Med. Aging 2, 30–37. 10.1016/j.tma.2018.08.003
    1. Barzilai N. R. (2017). Targeting Aging with Metformin (TAME). Innovation in Aging 1, 743. 10.1093/geroni/igx004.2682
    1. Berger F., Lau C., Dahlmann M., Ziegler M. (2005). Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms. J. Biol. Chem. 280, 36334–36341. 10.1074/jbc.M508660200
    1. Bieganowski P., Brenner C. (2004). Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans. Cell 117 (4), 495–502. 10.1016/s0092-8674(04)00416-7
    1. Camacho-Pereira J., Tarragó M. G., Chini C. C. S., Nin V., Escande C., Warner G. M., et al. (2016). CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-dependent Mechanism. Cel Metab. 23, 1127–1139. 10.1016/j.cmet.2016.05.006
    1. Campisi J., Kapahi P., Lithgow G. J., Melov S., Newman J. C., Verdin E. (2019). From Discoveries in Ageing Research to Therapeutics for Healthy Ageing. Nature 571 (7764), 183–192. 10.1038/s41586-019-1365-2
    1. Cantó C., Houtkooper R. H., Pirinen E., Youn D. Y., Oosterveer M. H., Cen Y., et al. (2012). The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cel Metab. 15, 838–847. 10.1016/j.cmet.2012.04.022
    1. de Cabo R., Carmona-Gutierrez D., Bernier M., Hall M. N., Madeo F. (2014). The Search for Antiaging Interventions: from Elixirs to Fasting Regimens. Cell 157 (7), 1515–1526. 10.1016/j.cell.2014.05.031
    1. Dollerup O. L., Christensen B., Svart M., Schmidt M. S., Sulek K., Ringgaard S., et al. (2018). A Randomized Placebo-Controlled Clinical Trial of Nicotinamide Riboside in Obese Men: Safety, Insulin-Sensitivity, and Lipid-Mobilizing Effects. Am. J. Clin. Nutr. 108 (2), 343–353. 10.1093/ajcn/nqy132
    1. Enright P. L. (2003). The Six-Minute Walk Test. Respir. Care August 48 (8), 783–785.
    1. Fang E. F., Lautrup S., Hou Y., Demarest T. G., Croteau D. L., Mattson M. P., et al. (2017). NAD + in Aging: Molecular Mechanisms and Translational Implications. Trends Mol. Med. 23, 899–916. 10.1016/j.molmed.2017.08.001
    1. Gale E. (2004). European Nicotinamide Diabetes Intervention Trial (ENDIT): a Randomised Controlled Trial of Intervention before the Onset of Type 1 Diabetes. The Lancet 363 (9413), 925–931. 10.1016/s0140-6736(04)15786-3
    1. Hsu C.-P., Zhai P., Yamamoto T., Maejima Y., Matsushima S., Hariharan N., et al. (2010). Silent Information Regulator 1 Protects the Heart from Ischemia/reperfusion. Circulation 122, 2170–2182. 10.1161/circulationaha.110.958033
    1. Hwang E. S., Song S. B. (2020). Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules 10 (5), 687. 10.3390/biom10050687
    1. Igarashi M., Miura M., Nakagawa-Nagahama Y., Yaku K., Kashiwabara K., Sawada M., et al. (2021). Chronic Nicotinamide Mononucleotide Supplementation Elevates Blood Nicotinamide Adenine Dinucleotide Levels and Alters Muscle Motility in Healthy Old Men. [Pre Print] Available at:. 10.21203/-455083/v1
    1. Junichiro I., Emi I., Masataka F., Nakaya H., Mitsuishi M., Yamaguchi S., et al. (2020). Effect of Oral Administration of Nicotinamide Mononucleotide on Clinical Parameters and Nicotinamide Metabolite Levels in Healthy Japanese Men. Endocr. J. 67 (2), 153–160. Released February 28, 2020, [Advance publication] Released November 02, 2019, Online ISSN 1348-4540, Print ISSN 0918-8959. 10.1507/endocrj.EJ19-0313
    1. Kincaid B., Bossy-Wetzel E. (2013). Forever Young: SIRT3 a Shield against Mitochondrial Meltdown, Aging, and Neurodegeneration. Front. Aging Neurosci. 5, 48. 10.3389/fnagi.2013.00048
    1. Knip M., Douek I. F., Moore W. P. T., Gillmor H. A., McLean A. E. M., Bingley P. J., et al. (2000). Safety of High-Dose Nicotinamide: a Review. Diabetologia 43 (11), 1337–1345. 10.1007/s001250051536
    1. Long A. N., Owens K., Schlappal A. E., Kristian T., Fishman P. S., Schuh R. A. (2015). Effect of Nicotinamide Mononucleotide on Brain Mitochondrial Respiratory Deficits in an Alzheimer's Disease-Relevant Murine Model. BMC Neurol. 15, 19. 10.1186/s12883-015-0272-x
    1. MacKay D., Hathcock J., Guarneri E. (2012). Niacin: Chemical Forms, Bioavailability, and Health Effects. Nutr. Rev. 70, 357–366. 10.1111/j.1753-4887.2012.00479.x
    1. Mills K. F., Yoshida S., Stein L. R., Grozio A., Kubota S., Sasaki Y., et al. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cel Metab. 24, 795–806. 10.1016/j.cmet.2016.09.013
    1. Mouchiroud L., Houtkooper R. H., Moullan N., Katsyuba E., Ryu D., Cantó C., et al. (2013). The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 154, 430–441. 10.1016/j.cell.2013.06.016
    1. Navas L. E., Carnero A. (2021). NAD+ Metabolism, Stemness, the Immune Response, and Cancer. Sig Transduct Target. Ther. 6, 2. 10.1038/s41392-020-00354-w
    1. Ware J. E., Jr., Sherbourne C. D., The M. O. S. (1992). The MOS 36-ltem Short-form Health Survey (SF-36). Med. Care 30 (6), 473–483. 10.1097/00005650-199206000-00002
    1. Yamamoto T., Byun J., Zhai P., Ikeda Y., Oka S., Sadoshima J. (2014). Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion. PLoS ONE 9, e98972. 10.1371/journal.pone.0098972
    1. Yoshino J., Mills K. F., Yoon M. J., Imai S.-i. (2011). Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. Cel Metab. 14, 528–536. 10.1016/j.cmet.2011.08.014
    1. Yoshino M., Yoshino J., Kayser B. D., Patti G. J., Franczyk M. P., Mills K. F., et al. (2021). Nicotinamide Mononucleotide Increases Muscle Insulin Sensitivity in Prediabetic Women. Science 372 (6547), 1224–1229. 10.1126/science.abe9985

Source: PubMed

3
Sottoscrivi