COVID-19: A Recommendation to Examine the Effect of Mouthrinses with β-Cyclodextrin Combined with Citrox in Preventing Infection and Progression

Florence Carrouel, Maria Pia Conte, Julian Fisher, Lucio Souza Gonçalves, Claude Dussart, Juan Carlos Llodra, Denis Bourgeois, Florence Carrouel, Maria Pia Conte, Julian Fisher, Lucio Souza Gonçalves, Claude Dussart, Juan Carlos Llodra, Denis Bourgeois

Abstract

Considered to be a major portal of entry for infectious agents, the oral cavity is directly associated with the evolutionary process of SARS-CoV-2 in its inhalation of ambient particles in the air and in expectorations. Some new generations of mouth rinses currently on the market have ingredients that could contribute to lower the SARS-CoV-2 viral load, and thus facilitate the fight against oral transmission. If chlorhexidine, a usual component of mouth rinse, is not efficient to kill SARS-CoV-2, the use of a mouth rinses and/or with local nasal applications that contain β-cyclodextrins combined with flavonoids agents, such as Citrox, could provide valuable adjunctive treatment to reduce the viral load of saliva and nasopharyngeal microbiota, including potential SARS-CoV-2 carriage. We urge national agencies and authorities to start clinical trials to evaluate the preventive effects of βCD-Citrox therapeutic oral biofilm rinses in reducing the viral load of the infection and possibly disease progression.

Keywords: 2019-nCoV; COVID-19; Citrox; SARS-CoV-2; microbiome; mouthrinse; oral cavity; viral load; β-cyclodextrins.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Zhang L., Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020;92:479–490. doi: 10.1002/jmv.25707.
    1. Lu C.-W., Liu X.-F., Jia Z.-F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet Lond. Engl. 2020;395:e39. doi: 10.1016/S0140-6736(20)30313-5.
    1. To K.K.-W., Tsang O.T.-Y., Chik-Yan Yip C., Chan K.-H., Wu T.-C., Chan J.M.C., Leung W.-S., Chik T.S.-H., Choi C.Y.-C., Kandamby D.H., et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020 doi: 10.1093/cid/ciaa149.
    1. Peng X., Xu X., Li Y., Cheng L., Zhou X., Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020;12:9. doi: 10.1038/s41368-020-0075-9.
    1. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J., et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020;382:1177–1179. doi: 10.1056/NEJMc2001737.
    1. Sultan A.S., Kong E.F., Rizk A.M., Jabra-Rizk M.A. The oral microbiome: A Lesson in coexistence. PLoS Pathog. 2018;14:e1006719. doi: 10.1371/journal.ppat.1006719.
    1. Zaura E., Nicu E.A., Krom B.P., Keijser B.J.F. Acquiring and maintaining a normal oral microbiome: Current perspective. Front. Cell. Infect. Microbiol. 2014;4:85. doi: 10.3389/fcimb.2014.00085.
    1. Deo P.N., Deshmukh R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. JOMFP. 2019;23:122–128.
    1. Lim Y., Totsika M., Morrison M., Punyadeera C. Oral Microbiome: A New Biomarker Reservoir for Oral and Oropharyngeal Cancers. Theranostics. 2017;7:4313–4321. doi: 10.7150/thno.21804.
    1. Lamarre A., Talbot P.J. Effect of pH and temperature on the infectivity of human coronavirus 229E. Can. J. Microbiol. 1989;35:972–974. doi: 10.1139/m89-160.
    1. Geller C., Varbanov M., Duval R.E. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4:3044–3068. doi: 10.3390/v4113044.
    1. Lynge Pedersen A.M., Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J. Dent. 2019;80:S3–S12. doi: 10.1016/j.jdent.2018.08.010.
    1. Tuon F.F., Gavrilko O., de Almeida S., Sumi E.R., Alberto T., Rocha J.L., Rosa E.A. Prospective, randomised, controlled study evaluating early modification of oral microbiota following admission to the intensive care unit and oral hygiene with chlorhexidine. J. Glob. Antimicrob. Resist. 2017;8:159–163. doi: 10.1016/j.jgar.2016.12.007.
    1. Khatoon Z., McTiernan C.D., Suuronen E.J., Mah T.-F., Alarcon E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4:e01067. doi: 10.1016/j.heliyon.2018.e01067.
    1. Mah T.-F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7:1061–1072. doi: 10.2217/fmb.12.76.
    1. Ruby J., Barbeau J. The buccale puzzle: The symbiotic nature of endogenous infections of the oral cavity. Can. J. Infect. Dis. J. Can. Mal. Infect. 2002;13:34–41. doi: 10.1155/2002/492656.
    1. Shaler C.R., Choi J., Rudak P.T., Memarnejadian A., Szabo P.A., Tun-Abraham M.E., Rossjohn J., Corbett A.J., McCluskey J., McCormick J.K., et al. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol. 2017;15:e2001930.
    1. Tonoyan L., Vincent-Bugnas S., Olivieri C.-V., Doglio A. New Viral Facets in Oral Diseases: The EBV Paradox. Int. J. Mol. Sci. 2019;20:5861. doi: 10.3390/ijms20235861.
    1. Giacaman R.A., Asrani A.C., Gebhard K.H., Dietrich E.A., Vacharaksa A., Ross K.F., Herzberg M.C. Porphyromonas gingivalis induces CCR5-dependent transfer of infectious HIV-1 from oral keratinocytes to permissive cells. Retrovirology. 2008;5:29. doi: 10.1186/1742-4690-5-29.
    1. Carrouel F., Viennot S., Ottolenghi L., Gaillard C., Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomater. Basel Switz. 2020;10:140. doi: 10.3390/nano10010140.
    1. Blom T., Slot D.E., Quirynen M., Van der Weijden G.A. The effect of mouthrinses on oral malodor: A systematic review. Int. J. Dent. Hyg. 2012;10:209–222. doi: 10.1111/j.1601-5037.2012.00546.x.
    1. Takenaka S., Ohsumi T., Noiri Y. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Jpn. Dent. Sci. Rev. 2019;55:33–40. doi: 10.1016/j.jdsr.2018.07.001.
    1. Messika J., La Combe B., Ricard J.-D. Oropharyngeal colonization: Epidemiology, treatment and ventilator-associated pneumonia prevention. Ann. Transl. Med. 2018;6:426. doi: 10.21037/atm.2018.10.17.
    1. Milstone A.M., Passaretti C.L., Perl T.M. Chlorhexidine: Expanding the armamentarium for infection control and prevention. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008;46:274–281.
    1. Hua F., Xie H., Worthington H.V., Furness S., Zhang Q., Li C. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2016;10:CD008367. doi: 10.1002/14651858.CD008367.pub3.
    1. Gartenmann S.J., Dörig I., Sahrmann P., Held U., Walter C., Schmidlin P.R. Influence of different post-interventional maintenance concepts on periodontal outcomes: An evaluation of three systematic reviews. BMC Oral Health. 2016;17:19. doi: 10.1186/s12903-016-0244-6.
    1. Shapiro S., Giertsen E., Guggenheim B. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res. 2002;36:93–100. doi: 10.1159/000057866.
    1. Seneviratne C.J., Leung K.C.-F., Wong C.-H., Lee S.-F., Li X., Leung P.C., Lau C.B.S., Wat E., Jin L. Nanoparticle-Encapsulated Chlorhexidine against Oral Bacterial Biofilms. PLOS ONE. 2014;9:e103234. doi: 10.1371/journal.pone.0103234.
    1. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41.
    1. Middleton E., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52:673–751.
    1. Nair M.P., Mahajan S., Reynolds J.L., Aalinkeel R., Nair H., Schwartz S.A., Kandaswami C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin. Vaccine Immunol. CVI. 2006;13:319–328. doi: 10.1128/CVI.13.3.319-328.2006.
    1. Kim H.P., Son K.H., Chang H.W., Kang S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004;96:229–245. doi: 10.1254/jphs.CRJ04003X.
    1. Korkina L.G., Afanas’ev I.B. Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. San Diego Calif. 1997;38:151–163.
    1. Li B.Q., Fu T., Dongyan Y., Mikovits J.A., Ruscetti F.W., Wang J.M. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem. Biophys. Res. Commun. 2000;276:534–538. doi: 10.1006/bbrc.2000.3485.
    1. Shimizu J.F., Lima C.S., Pereira C.M., Bittar C., Batista M.N., Nazaré A.C., Polaquini C.R., Zothner C., Harris M., Rahal P., et al. Flavonoids from Pterogyne nitens Inhibit Hepatitis C Virus Entry. Sci. Rep. 2017;7:16127. doi: 10.1038/s41598-017-16336-y.
    1. Jo S., Kim H., Kim S., Shin D.H., Kim M.-S. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem. Biol. Drug Des. 2019;94:2023–2030. doi: 10.1111/cbdd.13604.
    1. Ryu Y.B., Jeong H.J., Kim J.H., Kim Y.M., Park J.-Y., Kim D., Nguyen T.T.H., Park S.-J., Chang J.S., Park K.H., et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem. 2010;18:7940–7947. doi: 10.1016/j.bmc.2010.09.035.
    1. Saliasi I., Llodra J.C., Bravo M., Tramini P., Dussart C., Viennot S., Carrouel F. Effect of a Toothpaste/Mouthwash Containing Carica papaya Leaf Extract on Interdental Gingival Bleeding: A Randomized Controlled Trial. Int. J. Environ. Res. Public. Health. 2018;15:2660. doi: 10.3390/ijerph15122660.
    1. Karygianni L., Al-Ahmad A., Argyropoulou A., Hellwig E., Anderson A.C., Skaltsounis A.L. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbiol. 2015;6:1529. doi: 10.3389/fmicb.2015.01529.
    1. Hooper S.J., Lewis M.A.O., Wilson M.J., Williams D.W. Antimicrobial activity of Citrox bioflavonoid preparations against oral microorganisms. Br. Dent. J. 2011;210:E22. doi: 10.1038/sj.bdj.2010.1224.
    1. Malic S., Emanuel C., Lewis M., Williams D. Antimicrobial activity of novel mouthrinses against planktonic cells and biofilms of pathogenic microorganisms. Microbiol. Discov. 2013;1:11. doi: 10.7243/2052-6180-1-11.
    1. Jambhekar S.S., Breen P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today. 2016;21:356–362. doi: 10.1016/j.drudis.2015.11.017.
    1. Saokham P., Muankaew C., Jansook P., Loftsson T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Mol. Basel Switz. 2018;23:1161. doi: 10.3390/molecules23051161.
    1. Jambhekar S.S., Breen P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today. 2016;21:363–368. doi: 10.1016/j.drudis.2015.11.016.
    1. Questions and Answers on Cyclodextrins Used as Excipients in Medicinal Products for Human Use. [(accessed on 10 March 2020)]; Available online: .
    1. Kurkov S.V., Loftsson T. Cyclodextrins. Int. J. Pharm. 2013;453:167–180. doi: 10.1016/j.ijpharm.2012.06.055.
    1. Irie T., Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 1997;86:147–162. doi: 10.1021/js960213f.
    1. Tiwari G., Tiwari R., Rai A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci. 2010;2:72–79. doi: 10.4103/0975-7406.67003.
    1. Loftsson T., Jarho P., Másson M., Järvinen T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2005;2:335–351. doi: 10.1517/17425247.2.1.335.
    1. Braga S.S. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules. 2019;9:801. doi: 10.3390/biom9120801.
    1. Pratelli A., Colao V. Role of the lipid rafts in the life cycle of canine coronavirus. J. Gen. Virol. 2015;96:331–337. doi: 10.1099/vir.0.070870-0.
    1. Kusakabe T., Ozasa K., Kobari S., Momota M., Kishishita N., Kobiyama K., Kuroda E., Ishii K.J. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection. Vaccine. 2016;34:3191–3198. doi: 10.1016/j.vaccine.2016.04.001.
    1. Onishi M., Ozasa K., Kobiyama K., Ohata K., Kitano M., Taniguchi K., Homma T., Kobayashi M., Sato A., Katakai Y., et al. Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen. J. Immunol. 2015;194:2673–2682. doi: 10.4049/jimmunol.1402027.
    1. Leclercq L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J. Org. Chem. 2016;12:2644–2662. doi: 10.3762/bjoc.12.261.
    1. Jones S.T., Cagno V., Janeček M., Ortiz D., Gasilova N., Piret J., Gasbarri M., Constant D.A., Han Y., Vuković L., et al. Modified cyclodextrins as broad-spectrum antivirals. Sci. Adv. 2020;6:eaax9318. doi: 10.1126/sciadv.aax9318.
    1. Varan G., Varan C., Erdoğar N., Hıncal A.A., Bilensoy E. Amphiphilic cyclodextrin nanoparticles. Int. J. Pharm. 2017;531:457–469. doi: 10.1016/j.ijpharm.2017.06.010.
    1. Bilensoy E., Hincal A.A. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin. Drug Deliv. 2009;6:1161–1173. doi: 10.1517/17425240903222218.

Source: PubMed

3
Sottoscrivi