Supplementation of Short-Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Pilot Study (PLAN Study)

Stefania Marzocco, Gholamreza Fazeli, Lucia Di Micco, Giuseppina Autore, Simona Adesso, Fabrizio Dal Piaz, August Heidland, Biagio Di Iorio, Stefania Marzocco, Gholamreza Fazeli, Lucia Di Micco, Giuseppina Autore, Simona Adesso, Fabrizio Dal Piaz, August Heidland, Biagio Di Iorio

Abstract

Background: In end-stage renal disease (ESRD), gut-derived uremic toxins play a crucial role in the systemic inflammation and oxidative stress promoting the excess morbidity and mortality. The biochemical derangement is in part a consequence of an insufficient generation of short-chain fatty acids (SCFA) due to the dysbiosis of the gut and an insufficient consumption of the fermentable complex carbohydrates.

Aim of the study: The primary end-point was to evaluate the potential efficacy of SCFA (specifically, sodium propionate (SP)) for patients on maintenance hemodialysis (MHD) on systemic inflammation. Secondary end-points included potential attenuation of oxidative stress markers, insulin resistance and production of gut-derived uremic toxins indoxyl sulfate and p-cresol sulfate, as well as health status after SP supplementation.

Study design: We performed a single-center non-randomized pilot study in 20 MHD patients. They received the food additive SP with a daily intake of 2 × 500 mg in the form of capsules for 12 weeks. Pre-dialysis blood samples were taken at the beginning, after six weeks and at the end of the administration period, as well as four weeks after withdrawal of the treatment.

Results: The subjects revealed a significant decline of inflammatory parameters C-reactive protein (-46%), interleukin IL-2 (-27%) and IL-17 (-15%). The inflammatory parameters IL-6 and IFN-gamma showed a mild non-significant reduction and the anti-inflammatory cytokine IL-10 increased significantly (+71%). While the concentration of bacterial endotoxins and TNF-α remained unchanged, the gut-derived uremic toxins, indoxyl sulfate (-30%) and p-cresyl sulfate (-50%), revealed a significant decline. The SP supplementation reduced the parameters of oxidative stress malondialdehyde (-32%) and glutathione peroxidase activity (-28%). The serum insulin levels dropped by 30% and the HOMA-index by 32%. The reduction of inflammatory parameters was associated with a lowering of ferritin and a significant increase in transferrin saturation (TSAT). Four weeks after the end of the treatment phase, all improved parameters deteriorated again. Evaluation of the psycho-physical performance with the short form 36 (SF-36) questionnaire showed an enhancement in the self-reported physical functioning, general health, vitality and mental health. The SP supplementation was well tolerated and without important side effects. No patient had left the study due to intolerance to the medication. The SP supplementation in MHD patients reduced pro-inflammatory parameters and oxidative stress and improved insulin resistance and iron metabolism. Furthermore, SP effectively lowered the important gut-derived uremic toxins indoxyl and p-cresol sulfate. These improvements were associated with a better quality of life. Further controlled studies are required in a larger cohort to evaluate the clinical outcome.

Keywords: chronic kidney disease; gut microbiome; hemodialysis; indoxyl sulfate; p-cresyl sulfate; propionic acid; systemic micro-inflammation oxidative stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Representation of the study design. Blood samples were collected always before the start of the mid-week dialysis sessions.

References

    1. Vaziri N.D. Oxidative stress in uremia: Nature, mechanisms, and potential consequences. Semin. Nephrol. 2004;24:469–473. doi: 10.1016/j.semnephrol.2004.06.026.
    1. Anders H.J., Andersen K., Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–1016. doi: 10.1038/ki.2012.440.
    1. de Boer I.H., Zelnick L., Afkarian M., Ayers E., Curtin L., Himmelfarb J., Ikizler T.A., Kahn S.E., Kestenbaum B., Utzschneider K. Impaired glucose and insulin homeostasis in moderate-severe chronic kidney disease. J. Am. Soc. Nephrol. 2016;27:2861–2871.
    1. Vaziri N.D., Pahl M.V., Crum A., Norris K. Effect of uremia on structure and function of immune system. J. Ren. Nutr. 2012;22:149–156. doi: 10.1053/j.jrn.2011.10.020.
    1. Miele L., Giorgio V., Alberelli M.A., De Candia E., Gasbarrini A., Grieco A. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr. Cardiol. Rep. 2015;17:120. doi: 10.1007/s11886-015-0671-z.
    1. Haghikia A., Jörg S., Duscha A., Berg J., Manzel A., Waschbisch A., Hammer A., Lee D.H., May C., Wilck N., et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43:817–829. doi: 10.1016/j.immuni.2015.09.007.
    1. Lun H., Yang W., Zhao S., Jiang M., Xu M., Liu F., Wang Y. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. Microbiologyopen. 2018 doi: 10.1002/mbo3.678.
    1. Vaziri N.D., Wong J., Pahl M., Piceno Y.M., Yuan J., De Santis T.Z., Ni Z., Nguyen T.H., Andersen G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315. doi: 10.1038/ki.2012.345.
    1. Lau W.L., Savoj J., Nakata M.B., Vaziri N.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin. Sci. 2018;132:509–522. doi: 10.1042/CS20171107.
    1. Vaziri N.D., Zhao Y.Y., Pahl M.V. Altered intestinal microbial flora and impaired epithelial barrier structure and function in ckd: The nature, mechanisms, consequences and potential treatment. Nephrol. Dial. Transplant. 2016;31:737–746. doi: 10.1093/ndt/gfv095.
    1. Andersen K., Kesper M.S., Marschner J.A., Konrad L., Ryu M., Kumar Vr.S., Kulkarni O.P., Mulay S.R., Romoli S., Demleitner J., et al. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation. J. Am. Soc. Nephrol. 2017;28:76–83. doi: 10.1681/ASN.2015111285.
    1. Aronov P.A., Luo F.J., Plummer N.S., Quan Z., Holmes S., Hostetter T.H., Meyer T.W. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011;22:1769–1776. doi: 10.1681/ASN.2010121220.
    1. Barreto F.C., Barreto D.V., Liabeuf S., Meert N., Glorieux G., Temmar M., Choukroun G., Vanholder R., Massy Z.A., European Uremic Toxin Work G. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009;4:1551–1558. doi: 10.2215/CJN.03980609.
    1. Di Iorio B.R., Marzocco S., Nardone L., Sirico M.L., De Simone E., Di Natale G., Di Micco L. Urea and impairment of the gut-kidney axix in chronic kidney disease. G. Ital. Nefrol. 2017;34:1–14.
    1. Cosola C., Rocchetti M.T., Sabatino A., Fiaccadori E., Di Iorio B.R. Micorbiota issue in CKD: How promising are gut-target approaches. J. Nephrol. 2018 in press.
    1. Lau W.L., Kalantar-Zadeh K., Vaziri N.D. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015;130:92–98. doi: 10.1159/000381990.
    1. Diamanti A.P., Manuela R.M., Laganà B., D’Amelio R. Microbiota and chronic inflammatory arthritis: An interwoven link. J. Transl. Med. 2016;14:233. doi: 10.1186/s12967-016-0989-3.
    1. Wong J., Piceno Y.M., DeSantis T.Z., Pahl M., Andersen G.L., Vaziri N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in esrd. Am. J. Nephrol. 2014;39:230–237. doi: 10.1159/000360010.
    1. Puddu A., Sanguineti R., Montecucco F., Viviani G.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014;2014:162021. doi: 10.1155/2014/162021.
    1. Pisano A., D’Arrigo G., Coppolino G., Bolignano D. Biotic supplements for renal patients: A Systematic review and meta-analysis. Nutrients. 2018 doi: 10.3390/nu10091224.
    1. Pei M., Wei L., Hu S., Yang B., Si J., Yang H., Zhai J. Probiotics, prebiotics and synbiotics for chronic kidney disease: Protocol for a systematic review and meta-analysis. BMJ Open. 2018 doi: 10.1136/bmjopen-2017-020863.
    1. Harig J.M., Soergel K.H., Komorowski R.A., Wood C.M. Treatment of diversion colitis with short-chain-fatty acid irrigation. N. Engl. J. Med. 1989;320:23–28. doi: 10.1056/NEJM198901053200105.
    1. Khanna S. Microbiota replacement therapies: Innovation in gastrointestinal care. Clin. Pharmacol. Ther. 2018;103:102–111. doi: 10.1002/cpt.923.
    1. Ochoa-Reparaz J., Kirby T.O., Kasper L.H. The gut microbiome and multiple sclerosis. Cold Spring Harb. Perspect. Med. 2018 doi: 10.1101/cshperspect.a029017.
    1. Iraporda C., Errea A., Romanin D.E., Cayet D., Pereyra E., Pignataro O., Sirard J.C., Garrote G.L., Abraham A.G., Rumbo M. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220:1161–1169. doi: 10.1016/j.imbio.2015.06.004.
    1. Vinolo M.A., Rodrigues H.G., Nachbar R.T., Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–876. doi: 10.3390/nu3100858.
    1. Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor gpr43. Nature. 2009;461:1282–1286. doi: 10.1038/nature08530.
    1. Richards J.L., Yap Y.A., McLeod K.H., Mackay C.R., Marino E. Dietary metabolites and the gut microbiota: An alternative approach to control inflammatory and autoimmune diseases. Clin. Transl. Immunol. 2016;5:e82. doi: 10.1038/cti.2016.29.
    1. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M., Glickman J.N., Garrett W.S. The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science. 2013;341:569–573. doi: 10.1126/science.1241165.
    1. Park J., Kim M., Kang S.G., Jannasch A.H., Cooper B., Patterson J., Kim C.H. Short-chain fatty acids induce both effector and regulatory t cells by suppression of histone deacetylases and regulation of the mtor-s6k pathway. Mucosal Immunol. 2015;8:80–93. doi: 10.1038/mi.2014.44.
    1. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015;11:577–591. doi: 10.1038/nrendo.2015.128.
    1. Hara H., Haga S., Aoyama Y., Kiriyama S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J. Nutr. 1999;129:942–948. doi: 10.1093/jn/129.5.942.
    1. Ramezani A., Raj D.S. The gut microbiome, kidney disease, and targeted interventions. J. Am. Soc. Nephrol. 2014;25:657–670. doi: 10.1681/ASN.2013080905.
    1. Krishnamurthy V.M., Wei G., Baird B.C., Murtaugh M., Chonchol M.B., Raphael K.L., Greene T., Beddhu S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81:300–306. doi: 10.1038/ki.2011.355.
    1. Evenepoel P., Meijers B.K. Dietary fiber and protein: Nutritional therapy in chronic kidney disease and beyond. Kidney Int. 2012;81:227–229. doi: 10.1038/ki.2011.394.
    1. Sirich T.L., Plummer N.S., Gardner C.D., Hostetter T.H., Meyer T.W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2014;9:1603–1610. doi: 10.2215/CJN.00490114.
    1. Bellizzi V., Conte G., Borrelli S., Cupisti A., De Nicola L., Di Iorio B.R., Cabiddu G., Mandreoli M., Paoletti E., Piccoli G.B., et al. Controversial issues in CKD clinical practice: Position statement of the CKD-treatment working group of the Italian Society of Nephrology. J. Nephrol. 2017;30:159–170. doi: 10.1007/s40620-016-0338-x.
    1. Furuland H., McEwan P., Evans M., Linde C., Ayoubkhani D., Bakhai A., Palaka E., Bennett H., Qin L. Serum potassium as a predictor of adverse clinical outcomes in patients with chronic kidney disease: New risk equations using the UK clinical practice research datalink. BMC Nephrol. 2018;19:211. doi: 10.1186/s12882-018-1007-1.
    1. Yallapragada S.G., Nash C.B., Robinson D.T. Early-life exposure to antibiotics, alterations in the intestinal microbiome, and risk of metabolic disease in children and adults. Pediatr. Ann. 2015;44:265–269. doi: 10.3928/00904481-20151112-09.
    1. Dostal A., Lacroix C., Pham V.T., Zimmermann M.B., Del’homme C., Bernalier-Donadille A., Chassard C. Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. Br. J. Nutr. 2014;111:2135–2145. doi: 10.1017/S000711451400021X.
    1. Navarro-González J.F., Mora-Fernández C., Muros de Fuentes M., Donate-Correa J., Cazaña-Pérez V., García-Pérez J. Effect of phosphate binders on serum inflammatory profile, soluble CD14, and endotoxin levels in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011;6:2272–2279. doi: 10.2215/CJN.01650211.
    1. O’Toole P.W., Jeffery I.B. Gut microbiota and aging. Science. 2015;350:1214–1215. doi: 10.1126/science.aac8469.
    1. Shu C., Chen X., Xia T., Zhang F., Gao S., Chen W. Lc-ms/ms method for simultaneous determination of serum p-cresyl sulfate and indoxyl sulfate in patients undergoing peritoneal dialysis. Biomed. Chromatogr. 2016;30:1782–1788. doi: 10.1002/bmc.3753.
    1. EFSA Panel on Food additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the re-evaluation of propionic acid (E 280), sodium propionate (E 281), calcium propionate (E 282) and potassium propionate (E 283) as food additives. EFSA J. 2014;12:3779. doi: 10.2903/j.efsa.2014.3779.
    1. CFR-Code of Federal Regulations Title 21. [(accessed on 24 August 2018)]; Available online: .
    1. Meng X.M., Nikolic-Paterson D.J., Lan H.Y. Tgf-beta: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016;12:325–338. doi: 10.1038/nrneph.2016.48.
    1. Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902.
    1. Liakopoulos V., Roumeliotis S., Gorny X., Eleftheriadis T., Mertens P.R. Oxidative stress in patients undergoing peritoneal dialysis: A current review of the literature. Oxid. Med. Cell. Longev. 2017 doi: 10.1155/2017/3494867.
    1. Podrez E.A., Abu-Soud H.M., Hazen S.L. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic. Biol. Med. 2000;28:1717–1725. doi: 10.1016/S0891-5849(00)00229-X.
    1. Khan A.A., Alsahli M.A., Rahmani A.H. Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. 2018 doi: 10.3390/medsci6020033.
    1. Stenvinkel P., Alvestrand A. Inflammation in end-stage renal disease: Sources, consequences, and therapy. Semin. Dial. 2002;15:329–337. doi: 10.1046/j.1525-139X.2002.00083.x.
    1. Pingitore A., Chambers E.S., Hill T., Maldonado I.R., Liu B., Bewick G., Morrison D.J., Preston T., Wallis G.A., Tedford C., et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 2017;19:257–265. doi: 10.1111/dom.12811.
    1. Psichas A., Sleeth M.L., Murphy K.G., Brooks L., Bewick G.A., Hanyaloglu A.C., Ghatei M.A., Bloom S.R., Frost G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 2015;39:424–429. doi: 10.1038/ijo.2014.153.
    1. Wang X., Hu Z., Hu J., Du J., Mitch W.E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 2006;147:4160–4168. doi: 10.1210/en.2006-0251.
    1. Shinohara K., Shoji T., Emoto M., Tahara H., Koyama H., Ishimura E., Miki T., Tabata T., Nishizawa Y. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J. Am. Soc. Nephrol. 2002;13:1894–1900. doi: 10.1097/01.ASN.0000019900.87535.43.
    1. Karaboyas A., Morgenstern H., Pisoni R.L., Zee J., Vanholder R., Jacobson S.H., Inaba M., Loram L.C., Port F.K., Robinson B.M. Association between serum ferritin and mortality: Findings from the USA, Japan and European dialysis outcomes and practice patterns study. Nephrol. Dial. Transplant. 2018 doi: 10.1093/ndt/gfy190.
    1. Kalantar-Zadeh K., Rodriguez R.A., Humphreys M.H. Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. Nephrol. Dial. Transplant. 2004;19:141–149. doi: 10.1093/ndt/gfg493.
    1. Alves M.T., Vilaca S.S., Carvalho M., Fernandes A.P., Dusse L.M., Gomes K.B. Resistance of dialyzed patients to erythropoietin. Rev. Bras. Hematol. Hemoterapia. 2015;37:190–197. doi: 10.1016/j.bjhh.2015.02.001.
    1. Natarajan N., Hori D., Flavahan S., Steppan J., Flavahan N.A., Berkowitz D.E., Pluznick J.L. Microbial short chain fatty acid metabolites lower blood pressure via endothelial g protein-coupled receptor 41. Physiol. Genomics. 2016;48:826–834. doi: 10.1152/physiolgenomics.00089.2016.
    1. Pluznick J.L. Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertens. Rep. 2017;19:25. doi: 10.1007/s11906-017-0722-5.
    1. Vanholder R., Schepers E., Pletinck A., Nagler E.V., Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014;25:1897–1907. doi: 10.1681/ASN.2013101062.
    1. Evenepoel P., Glorieux G., Meijers B. P-cresol sulfate and indoxyl sulfate: Some clouds are gathering in the uremic toxin sky. Kidney Int. 2017;92:1323–1324. doi: 10.1016/j.kint.2017.06.029.
    1. Menni C., Lin C., Cecelja M., Mangino M., Matey-Hernandez M.L., Keehn L., Mohney R.P., Steves C.J., Spector T.D., Kuo C.F., Chowienczyk P., Valdes A.M. Gut microbial diversity is associated with lower arterial stiffness in women. Eur. Heart J. 2018;39:2390–2397. doi: 10.1093/eurheartj/ehy226.
    1. Meijers B.K., De Loor H., Bammens B., Verbeke K., Vanrenterghem Y., Evenepoel P. P-cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009;4:1932–1938. doi: 10.2215/CJN.02940509.
    1. Hung S.C., Kuo K.L., Wu C.C., Tarng D.C. Indoxyl sulfate: A novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. 2017 doi: 10.1161/JAHA.116.005022.
    1. Brown A.J., Goldsworthy S.M., Barnes A.A., Eilert M.M., Tcheang L., Daniels D., Muir A.I., Wigglesworth M.J., Kinghorn I., Fraser N.J., et al. The orphan g protein-coupled receptors gpr41 and gpr43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003;278:11312–11319. doi: 10.1074/jbc.M211609200.
    1. Wright R.S., Anderson J.W., Bridges S.R. Propionate inhibits hepatocyte lipid synthesis. Proc. Soc. Exp. Biol. Med. 1990;195:26–29. doi: 10.3181/00379727-195-43113.
    1. Boillot J., Alamowitch C., Berger A.M., Luo J., Bruzzo F., Bornet F.R., Slama G. Effects of dietary propionate on hepatic glucose production, whole-body glucose utilization, carbohydrate and lipid metabolism in normal rats. Br. J. Nutr. 1995;73:241–251. doi: 10.1079/BJN19950026.
    1. Arora T., Loo R.L., Anastasovska J., Gibson G.R., Tuohy K.M., Sharma R.K., Swann J.R., Deaville E.R., Sleeth M.L., Thomas E.L., et al. Differential effects of two fermentable carbohydrates on central appetite regulation and body composition. PLoS ONE. 2012;7:e43263. doi: 10.1371/journal.pone.0043263.
    1. Correa-Oliveira R., Fachi J.L., Vieira A., Sato F.T., Vinolo M.A. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016;5:e73. doi: 10.1038/cti.2016.17.
    1. Zeng X., Sunkara L.T., Jiang W., Bible M., Carter S., Ma X., Qiao S., Zhang G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS ONE. 2013;8:e72922. doi: 10.1371/journal.pone.0072922.
    1. Hung C.C., Garner C.D., Slauch J.M., Dwyer Z.W., Lawhon S.D., Frye J.G., McClelland M., Ahmer B.M., Altier C. The intestinal fatty acid propionate inhibits salmonella invasion through the post-translational control of hild. Mol. Microbiol. 2013;87:1045–1060. doi: 10.1111/mmi.12149.
    1. Andrade-Oliveira V., Amano M.T., Correa-Costa M., Castoldi A., Felizardo R.J., de Almeida D.C., Bassi E.J., Moraes-Vieira P.M., Hiyane M.I., Rodas A.C., et al. Gut bacteria products prevent aki induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 2015;26:1877–1888. doi: 10.1681/ASN.2014030288.
    1. Tedelind S., Westberg F., Kjerrulf M., Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World J. Gastroenterol. 2007;13:2826–2832. doi: 10.3748/wjg.v13.i20.2826.
    1. Sunkara L.T., Jiang W., Zhang G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS ONE. 2012;7:e49558. doi: 10.1371/journal.pone.0049558.
    1. Tayebi Khosroshahi H., Vaziri N.D., Abedi B., Asl B.H., Ghojazadeh M., Jing W., Vatankhah A.M. Effect of high amylose resistant starch (ham-rs2) supplementation on biomarkers of inflammation and oxidative stress in hemodialysis patients: A randomized clinical trial. Hemodial. Int. 2018 doi: 10.1111/hdi.12653. in press.
    1. Vaziri N.D., Liu S.M., Lau W.L., Khazaeli M., Nazertehrani S., Farzaneh S.H., Kieffer D.A., Adams S.H., Martin R.J. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE. 2014;9:e114881. doi: 10.1371/journal.pone.0114881.
    1. Niwa T., Tsukushi S., Ise M., Miyazaki T., Tsubakihara Y., Owada A., Shiigai T. Indoxyl sulfate and progression of renal failure: Effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Miner. Electrolyte Metab. 1997;23:179–184.
    1. Vaziri N.D., Yuan J., Khazaeli M., Masuda Y., Ichii H., Liu S.M. Oral activated charcoal adsorbent (ast-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption. Am. J. Nephrol. 2013;37:518–525. doi: 10.1159/000351171.
    1. Schulman G., Berl T., Beck G.J., Remuzzi G., Ritz E., Arita K., Kato A., Shimizu M. Randomized placebo-controlled eppic trials of ast-120 in ckd. J. Am. Soc. Nephrol. 2015;26:1732–1746. doi: 10.1681/ASN.2014010042.

Source: PubMed

3
Sottoscrivi