The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment

Cornelia Gottschick, Zhi-Luo Deng, Marius Vital, Clarissa Masur, Christoph Abels, Dietmar H Pieper, Irene Wagner-Döbler, Cornelia Gottschick, Zhi-Luo Deng, Marius Vital, Clarissa Masur, Christoph Abels, Dietmar H Pieper, Irene Wagner-Döbler

Abstract

Background: The urinary microbiota is similarly complex as the vaginal and penile microbiota, yet its role as a reservoir for pathogens and for recurrent polymicrobial biofilm diseases like bacterial vaginosis (BV) is not clear.

Results: Here, we analysed the urinary microbiota of healthy men and women and compared it with that of women during BV and after antibiotic treatment using next-generation sequencing of the 16S rRNA gene V1-V2 regions. Eight different community types, so called urotypes (UT), were identified in healthy humans, all of which were shared between men and women, except UT 7, dominated in relative abundance by Lactobacillus crispatus, which was found in healthy women only. Orally applied metronidazole significantly reduced Shannon diversity and the mean relative abundance of Gardnerella vaginalis, Atopobium vaginae, and Sneathia amnii, while L. iners increased to levels twofold higher than those found in healthy women. Although individual urine microbial profiles strongly responded to the antibiotic, the healthy community could not be restored. The correlation between urinary and vaginal fluid microbiota was generally weak and depending on UT and BV status. It was highest in UT 1 in acute BV (59% of samples), but after metronidazole treatment, only 3 out of 35 women showed a significant correlation between their urinary and vaginal microbiota composition.

Conclusions: Urethra and bladder thus harbor microbial communities distinct from the vagina. The high abundance of BV related species in the urine of both men and women suggests that urine may act as a reservoir of pathogens and contribute to recurrence.

Trial registration: ClinicalTrials.gov, NCT02687789.

Keywords: Antibiotic treatment; Bacterial vaginosis; Healthy urinary microbiome; Urinary microbiota; Urotypes; Vaginal microbiota.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was approved by the local ethics committees (Bayerische Landesärztekammer, München for the clinical study and Niedersächsische Landesärztekammer, Hannover, for the collection of urine from healthy individuals) and written consent was obtained from all participants. The clinical study was conducted in accordance with the Declaration of Helsinki on Ethical Principles for Medical Research Involving Human Subjects. Principles and guidelines for good clinical practice were followed.

Consent for publication

All authors of the manuscript have read and agreed to its content and are accountable for all aspects of the accuracy and integrity of the manuscript in accordance with ICMJE criteria. The article is original, has not already been published in a journal, and is not currently under consideration by another journal.

Competing interests

The authors have read the journal’s policy. The company Dr. August Wolff GmbH developed the pessary against recurrent BV. The study was partially funded through an independent research project by the Bundesministerium für Wirtschaft und Forschung. The authors affiliated with this company (CM, CA) designed the clinical trial, supervised sample distribution to various analytical laboratories and the HZI, and performed statistical analyses of the clinical data. At no point did they interfere with the scientific interpretation of the results. The WO 3191 pessary will not be developed for commercial purposes.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Principle coordinate analyses of the urinary microbiota of healthy men and women (a) and women during acute BV, after metronidazole treatment, and in health (b)
Fig. 2
Fig. 2
Rank abundance and Shannon diversity of urinary microbiota. a Dominance plot of cumulated samples from healthy men and women and women during acute BV and after metronidazole treatment. b Shannon indices of all groups. Mean and quartile range are shown. Asterisks indicate significant (p < 0.01) differences
Fig. 3
Fig. 3
Individual urinary microbiota of healthy men and women and women during acute BV clustered according to urotypes. Clustering of samples was performed based on the Euclidean distance using the Ward clustering method in R. The 19 most abundant OTUs are shown and all others (boxes above the relative abundance plot. Colored boxes above the abundance plot indicate sample source and grey boxes decode diversity (H′)
Fig. 4
Fig. 4
The urinary microbiota during acute BV and after metronidazole treatment. a Principle coordinates analysis of urine samples of women with BV before (red) and after (green) metronidazole treatment. Samples from the same women are connected by a black line. b Mean relative abundance of urine microbiota during acute BV and after metronidazole treatment. The 19 most abundant OTUs are shown and the remaining OTUs are summarized as “others”. c Clustering of urine microbiata after metronidazole treatment. Clustering of samples was performed based on the Euclidean distance using the Ward clustering method in R. Urotypes are indicated. d LefSe analysis of urine microbiota belonging to UT1, UT2, and UT3 before and after metronidazole treatment
Fig. 5
Fig. 5
Comparison between urine and vaginal fluid microbiota in acute BV and after metronidazole treatment. a Principal coordinates analysis. b Heatmap of the mean relative abundance of the 20 most abundant taxa. Met metronidazole

References

    1. Thomas-White K, Brady M, Wolfe AJ, Mueller ER. The bladder is not sterile: history and current discoveries on the urinary microbiome. Curr Bladder Dysfunct Rep. 2016;11:18–24. doi: 10.1007/s11884-016-0345-8.
    1. Siddiqui H, Nederbragt AJ, Lagesen K, Jeansson SL, Jakobsen KS. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011;11:244. doi: 10.1186/1471-2180-11-244.
    1. Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh MJ, et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med. 2012;10:174. doi: 10.1186/1479-5876-10-174.
    1. Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 2012;12:205. doi: 10.1186/1471-2180-12-205.
    1. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio. 2014;5:e01283–e01214. doi: 10.1128/mBio.01283-14.
    1. Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K, Fitzgerald M, et al. Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol. 2012;50:1376–1383. doi: 10.1128/JCM.05852-11.
    1. van de Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H, et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One. 2014;9:e105998. doi: 10.1371/journal.pone.0105998.
    1. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol. 2015;12:81–90. doi: 10.1038/nrurol.2014.361.
    1. Karstens L, Asquith M, Davin S, Stauffer P, Fair D, Gregory WT, et al. Does the urinary microbiome play a role in urgency urinary incontinence and its severity? Front Cell Infect Microbiol. 2016;6:78. doi: 10.3389/fcimb.2016.00078.
    1. Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol. 2014;52:871–876. doi: 10.1128/JCM.02876-13.
    1. Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, et al. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol. 2015;213:347–311. doi: 10.1016/j.ajog.2015.07.009.
    1. Schneeweiss J, Koch M, Umek W. The human urinary microbiome and how it relates to urogynecology. Int Urogynecol J. 2016;27:1307–1312. doi: 10.1007/s00192-016-2944-5.
    1. Dong Q, Nelson DE, Toh E, Diao L, Gao X, Fortenberry JD, et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One. 2011;6:e19709. doi: 10.1371/journal.pone.0019709.
    1. Nelson DE, Dong Q, Van der Pol B, Toh E, Fan B, Katz BP, et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS One. 2012;7:e36298. doi: 10.1371/journal.pone.0036298.
    1. Nelson DE, Van der Pol B, Dong Q, Revanna KV, Fan B, Easwaran S, et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS One. 2010;5:e14116. doi: 10.1371/journal.pone.0014116.
    1. Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol. 2013;3:41. doi: 10.3389/fcimb.2013.00041.
    1. Allsworth JE, Peipert JF. Prevalence of bacterial vaginosis: 2001-2004 National Health and Nutrition Examination Survey data. Obstet Gynecol. 2007(109):114–20.
    1. Bradshaw CS, Morton AN, Hocking J, Garland SM, Morris MB, Moss LM, et al. High recurrence rates of bacterial vaginosis over the course of 12 months after oral metronidazole therapy and factors associated with recurrence. J Infect Dis. 2006;193:1478–1486. doi: 10.1086/503780.
    1. Machado D, Castro J, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Cerca N. Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions. Front Microbiol. 2015;6:1528.
    1. Zozaya M, Ferris MJ, Siren JD, Lillis R, Myers L, Nsuami MJ, et al. Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome. 2016;4:16. doi: 10.1186/s40168-016-0161-6.
    1. Verstraelen H, Swidsinski A. The biofilm in bacterial vaginosis: implications for epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2013;26:86–89. doi: 10.1097/QCO.0b013e32835c20cd.
    1. Gottschick C, Szafranski SP, Kunze B, Sztajer H, Masur C, Abels C, et al. Screening of compounds against Gardnerella vaginalis biofilms. PLoS One. 2016;11:e0154086. doi: 10.1371/journal.pone.0154086.
    1. Gottschick C, Deng Z-L, Vital M, Masur C, Abels C, Pieper DH, et al. Treatment of biofilms in bacterial vaginosis – clinical study and microbiome analysis. MBIO-D-17-00104. 2017.
    1. Price TK, Dune T, Hilt EE, Thomas-White KJ, Kliethermes S, Brincat C, et al. The clinical urine culture: enhanced techniques improve detection of clinically relevant microorganisms. J Clin Microbiol. 2016;54:1216–1222. doi: 10.1128/JCM.00044-16.
    1. Nienhouse V, Gao X, Dong Q, Nelson DE, Toh E, McKinley K, et al. Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS One. 2014;9:e114185. doi: 10.1371/journal.pone.0114185.
    1. Brubaker L, Wolfe AJ. The new world of the urinary microbiota in women. Am J Obstet Gynecol. 2015;213:644–649. doi: 10.1016/j.ajog.2015.05.032.
    1. Camarinha-Silva A, Jauregui R, Chaves-Moreno D, Oxley AP, Schaumburg F, Becker K, et al. Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol. 2014;16:2939–2952. doi: 10.1111/1462-2920.12362.
    1. Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, et al. Species-level classification of the vaginal microbiome. BMC Genomics. 2012;13 Suppl 8:S17.
    1. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z.
    1. Dols JA, Molenaar D, van der Helm JJ, Caspers MP, de Kat Angelino-Bart A, Schuren FH, et al. Molecular assessment of bacterial vaginosis by lactobacillus abundance and species diversity. BMC Infect Dis. 2016;16:180. doi: 10.1186/s12879-016-1513-3.
    1. Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 2010;11:488. doi: 10.1186/1471-2164-11-488.
    1. Oakley BB, Fiedler TL, Marrazzo JM, Fredricks DN. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl Environ Microbiol. 2008;74:4898–4909. doi: 10.1128/AEM.02884-07.
    1. Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin Microbiol Rev. 2016;29:223–238. doi: 10.1128/CMR.00075-15.
    1. Menard JP. Antibacterial treatment of bacterial vaginosis: current and emerging therapies. Int J Womens Health. 2011;3:295–305. doi: 10.2147/IJWH.S23814.
    1. Petrova MI, Reid G, Vaneechoutte M, Lebeer S: Lactobacillus iners: Friend or Foe? Trends Microbiol. 2016;25(3):182–91.
    1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–4687. doi: 10.1073/pnas.1002611107.
    1. Ravel J, Brotman RM, Gajer P, Ma B, Nandy M, Fadrosh DW, et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome. 2013;1:29. doi: 10.1186/2049-2618-1-29.
    1. Stapleton AE. The Vaginal Microbiota and Urinary Tract Infection. Microbiol Spectr. 2016;4.
    1. Brandt M, Abels C, May T, Lohmann K, Schmidts-Winkler I, Hoyme UB. Intravaginally applied metronidazole is as effective as orally applied in the treatment of bacterial vaginosis, but exhibits significantly less side effects. Eur J Obstet Gynecol Reprod Biol. 2008;141:158–162. doi: 10.1016/j.ejogrb.2008.07.022.

Source: PubMed

3
Sottoscrivi