Crystal engineering of green tea epigallocatechin-3-gallate (EGCg) cocrystals and pharmacokinetic modulation in rats

Adam J Smith, Padmini Kavuru, Kapildev K Arora, Sheshanka Kesani, Jun Tan, Michael J Zaworotko, R Douglas Shytle, Adam J Smith, Padmini Kavuru, Kapildev K Arora, Sheshanka Kesani, Jun Tan, Michael J Zaworotko, R Douglas Shytle

Abstract

The most abundant polyphenol in green tea, epigallocatechin-3-gallate (EGCg), has recently received considerable attention due to the discovery of numerous health-promoting bioactivities. Despite reports of its poor oral bioavailability, EGCg has been included in many dietary supplement formulations. Conventional preformulation methods have been employed to improve the bioavailability of EGCg. However, these methods have limitations that hinder the development of EGCg as an effective therapeutic agent. In this study, we have utilized the basic concepts of crystal engineering and several crystallization techniques to screen for various solid crystalline forms of EGCg and evaluated the efficacy of crystal engineering for modulating the pharmacokinetics of EGCg. We synthesized and characterized seven previously undescribed crystal forms of EGCg including the pure crystal structure of EGCg. The aqueous solubility profiles of four new EGCg cocrystals were determined. These cocrystals were subsequently dosed at 100 mg EGCg per kg body weight in rats, and the plasma levels were monitored over the course of eight hours following the single oral dose. Two of the EGCg cocrystals were found to exhibit modest improvements in relative bioavailability. Further, cocrystallization resulted in marked effects on pharmacokinetic parameters including Cmax, Tmax, area under curve, relative bioavailability, and apparent terminal half-life. Our findings suggest that modulation of the pharmacokinetic profile of EGCg is possible using cocrystallization and that it offers certain opportunities that could be useful during its development as a therapeutic agent.

Figures

Figure 1
Figure 1
Graphical representation of the new EGCg crystal forms.
Figure 2
Figure 2
(a) EGCg molecules in Form II forming sheets with channels. (b) A typical channel being occupied by solvent molecules in Form II.
Figure 3
Figure 3
(a) Illustration of a representative sheet formed by EGCg and water molecules in Form III. (b) Nitrobenzene molecule sandwiched between sheets of EGCg and water molecules in Form III.
Figure 4
Figure 4
(a) Crystal packing of Form IV; crinkled sheets with cavities were created via several O–H···O H-bonds. (b) Self-interpenetrated 3D structure of Form IV.
Figure 5
Figure 5
Intermolecular H-bonding between EGCg and INM molecules. Water molecules are removed for clarity.
Figure 6
Figure 6
(a) Asymmetric unit of EGCgNIC·9H2O cocrystal. (b) H-bonding between EGCg and NIC molecules.
Figure 7
Figure 7
Crystal packing in EGCg·INA·3H2O.
Figure 8
Figure 8
Illustration hydrogen bonding between EGCg and NAC molecules in EGCgNAC·xH2O cocrystal (water molecules are not shown in the figure for clarity).
Figure 9
Figure 9
Dissolution profiles of (a) EGCg and its cocrystals and (b) the cocrystals alone in water.
Figure 10
Figure 10
Pharmacokinetic profiles (mean plasma concentration + SEM versus time). The solid line in each panel represents the indicated EGCg cocrystal. The dashed lines are the EGCg control. There were three rats per group (n = 3). ★P < 0.05.

References

    1. Hertog M. G. Epidemiological evidence on potential health properties of flavonoids. Proc. Nutr. Soc. 1996, 551B385–97.
    1. Arts I. C. A review of the epidemiological evidence on tea, flavonoids, and lung cancer. J. Nutr. 2008, 13881561S–1566S.
    1. Formica J. V.; Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33121061–80.
    1. Hwang J. T.; Ha J.; Park I. J.; Lee S. K.; Baik H. W.; Kim Y. M.; Park O. J. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 2007, 2471115–21.
    1. Jung Y. D.; Kim M. S.; Shin B. A.; Chay K. O.; Ahn B. W.; Liu W.; Bucana C. D.; Gallick G. E.; Ellis L. M. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br. J. Cancer 2001, 846844–50.
    1. Lim Y. C.; Park H. Y.; Hwang H. S.; Kang S. U.; Pyun J. H.; Lee M. H.; Choi E. C.; Kim C. H. (−)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Lett. 2008, 2711140–52.
    1. Wang X.; Hao M. W.; Dong K.; Lin F.; Ren J. H.; Zhang H. Z. Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch. Pharm. Res. 2009, 3291263–9.
    1. Wang Y. C.; Bachrach U. The specific anti-cancer activity of green tea (−)-epigallocatechin-3-gallate (EGCG). Amino Acids 2002, 222131–43.
    1. Lin C. L.; Chen T. F.; Chiu M. J.; Way T. D.; Lin J. K. Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol. Aging 2009, 30181–92.
    1. Obregon D. F.; Rezai-Zadeh K.; Bai Y.; Sun N.; Hou H.; Ehrhart J.; Zeng J.; Mori T.; Arendash G. W.; Shytle D.; Town T.; Tan J. ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 2006, 2812416419–27.
    1. Rezai-Zadeh K.; Arendash G. W.; Hou H.; Fernandez F.; Jensen M.; Runfeldt M.; Shytle R. D.; Tan J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008, 1214, 177–87.
    1. Rezai-Zadeh K.; Shytle D.; Sun N.; Mori T.; Hou H.; Jeanniton D.; Ehrhart J.; Townsend K.; Zeng J.; Morgan D.; Hardy J.; Town T.; Tan J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 2005, 25388807–14.
    1. Hwang J. T.; Park I. J.; Shin J. I.; Lee Y. K.; Lee S. K.; Baik H. W.; Ha J.; Park O. J. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 2005, 3382694–9.
    1. Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr. 2007, 264373S–388S.
    1. Cai E. P.; Lin J. K. Epigallocatechin Gallate (EGCG) and Rutin Suppress the Glucotoxicity through Activating IRS2 and AMPK Signaling in Rat Pancreatic beta Cells. J. Agric. Food Chem. 2009, 57, 9817–27.
    1. Lin C. L.; Lin J. K. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol. Nutr. Food Res. 2008, 528930–9.
    1. Smith A.; Giunta B.; Bickford P. C.; Fountain M.; Tan J.; Shytle R. D. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Pharmaceutics 2010, 3891–2207–12.
    1. Ando S.; Kikuchi J.; Fujimura Y.; Ida Y.; Higashi K.; Moribe K.; Yamamoto K. Physicochemical characterization and structural evaluation of a specific 2:1 cocrystal of naproxen-nicotinamide. J. Pharm. Sci. 2012, 10193214–21.
    1. Cherukuvada S.; Babu N. J.; Nangia A. Nitrofurantoin-p-aminobenzoic acid cocrystal: hydration stability and dissolution rate studies. J. Pharm. Sci. 2011, 10083233–44.
    1. Gao Y.; Zu H.; Zhang J. Enhanced dissolution and stability of adefovir dipivoxil by cocrystal formation. J. Pharm. Pharmacol. 2011, 634483–90.
    1. Goud N. R.; Gangavaram S.; Suresh K.; Pal S.; Manjunatha S. G.; Nambiar S.; Nangia A. Novel furosemide cocrystals and selection of high solubility drug forms. J. Pharm. Sci. 2012, 1012664–80.
    1. Jung M. S.; Kim J. S.; Kim M. S.; Alhalaweh A.; Cho W.; Hwang S. J.; Velaga S. P. Bioavailability of indomethacin-saccharin cocrystals. J. Pharm. Pharmacol. 2010, 62111560–8.
    1. McNamara D. P.; Childs S. L.; Giordano J.; Iarriccio A.; Cassidy J.; Shet M. S.; Mannion R.; O’Donnell E.; Park A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 2006, 2381888–97.
    1. Okaniwa M.; Imada T.; Ohashi T.; Miyazaki T.; Arita T.; Yabuki M.; Sumita A.; Tsutsumi S.; Higashikawa K.; Takagi T.; Kawamoto T.; Inui Y.; Yoshida S.; Ishikawa T. Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors: 2. Synthesis and characterization of a novel imide-type prodrug for improving oral absorption. Bioorg. Med. Chem. 2012, 20154680–92.
    1. Rahman Z.; Samy R.; Sayeed V. A.; Khan M. A. Physicochemical and mechanical properties of carbamazepine cocrystals with saccharin. Pharm. Dev. Technol. 2012, 174457–65.
    1. Schultheiss N.; Newman A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 962950–2967.
    1. Smith A. J.; Kavuru P.; Wojtas L.; Zaworotko M. J.; Shytle R. D. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol. Pharmaceutics 2011, 851867–76.
    1. Tsutsumi S.; Iida M.; Tada N.; Kojima T.; Ikeda Y.; Moriwaki T.; Higashi K.; Moribe K.; Yamamoto K. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties. Int. J. Pharmaceutics 2011, 4212230–6.
    1. Yadav A. V.; Dabke A. P.; Shete A. S. Crystal engineering to improve physicochemical properties of mefloquine hydrochloride. Drug Dev. Ind. Pharm. 2010, 3691036–45.
    1. Shutava T. G.; Balkundi S. S.; Lvov Y. M. (−)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J. Colloid Interface Sci. 2009, 3302276–83.
    1. Ullmann U.; Haller J.; Decourt J. D.; Girault J.; Spitzer V.; Weber P. Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int. J. Vitam. Nutr. Res. 2004, 744269–78.
    1. Swezey R. R.; Aldridge D. E.; LeValley S. E.; Crowell J. A.; Hara Y.; Green C. E. Absorption, tissue distribution and elimination of 4-[(3)h]-epigallocatechin gallate in beagle dogs. Int. J. Toxicol. 2003, 223187–93.
    1. Cai Y.; Anavy N. D.; Chow H. H. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab. Dispos. 2002, 30111246–9.
    1. Hu B.; Ting Y.; Yang X.; Tang W.; Zeng X.; Huang Q. Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem. Commun. (Cambridge) 2012, 48182421–3.
    1. Bruker APEX2 (Version 2008.1–0); Bruker AXS Inc.: Madison, WI, 2008.
    1. SAINT Data Reduction Software; Bruker AXS Inc.: Madison, WI, 2009.
    1. Sheldrick G. M.SADABS. Program for Empirical Absorption Correction; University of Gottingen: Gottingen, Germany, 2008.
    1. Farrugia L. J. WinGX suite for single crystal small molecule crystallography. J. Appl. Cryst. 1999, 32, 837–838.
    1. Sheldrick G. M.SHELXL-97. Program for the Refinement of Crystal Structures; University of Gottingen: Gottingen, Germany, 1997.
    1. Sheldrick G. M. Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. 1990, A46, 467–473.
    1. Lambert J. D.; Lee M. J.; Diamond L.; Ju J.; Hong J.; Bose M.; Newmark H. L.; Yang C. S. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab. Dispos. 2006, 3418–11.
    1. Sparidans R. W.; Lagas J. S.; Schinkel A. H.; Schellens J. H.; Beijnen J. H. Liquid chromatography-tandem mass spectrometric assays for salinomycin in mouse plasma, liver, brain and small intestinal contents and in OptiMEM cell culture medium. J. Chromatogr., B: Analyt. Technol. Biomed. Life Sci. 2007, 8552200–10.
    1. Wang M.; Miksa I. R. Multi-component plasma quantitation of anti-hyperglycemic pharmaceutical compounds using liquid chromatography-tandem mass spectrometry. J. Chromatogr., B: Analyt. Technol. Biomed. Life Sci. 2007, 8561–2318–27.
    1. Wang Z.; Hop C. E.; Leung K. H.; Pang J. Determination of in vitro permeability of drug candidates through a caco-2 cell monolayer by liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 2000, 35171–6.
    1. Dube A.; Nicolazzo J. A.; Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur. J. Pharm. Sci. 2010, 412219–25.
    1. Kale A.; Gawande S.; Kotwal S.; Netke S.; Roomi W.; Ivanov V.; Niedzwiecki A.; Rath M. Studies on the effects of oral administration of nutrient mixture, quercetin and red onions on the bioavailability of epigallocatechin gallate from green tea extract. Phytother. Res. 2010, 24Suppl 1S48–55.
    1. Landis-Piwowar K. R.; Huo C.; Chen D.; Milacic V.; Shi G.; Chan T. H.; Dou Q. P. A novel prodrug of the green tea polyphenol (−)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 2007, 6794303–10.
    1. Sekiguchi K.; Obi N. Studies on Absorption of Eutectic Mixture. I. A Comparison of the Behavior of Eutectic Mixture of Sulfathiazole and that of Ordinary Sulfathiazole in Man. Chem. Pharm. Bull 1961, 9, 866–872.
    1. Hickey M. B.; Peterson M. L.; Scoppettuolo L. A.; Morrisette S. L.; Vetter A.; Guzman H.; Remenar J. F.; Zhang Z.; Tawa M. D.; Haley S.; Zaworotko M. J.; Almarsson O. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur. J. Pharm. Biopharm. 2007, 671112–9.
    1. Bak A.; Gore A.; Yanez E.; Stanton M.; Tufekcic S.; Syed R.; Akrami A.; Rose M.; Surapaneni S.; Bostick T.; King A.; Neervannan S.; Ostovic D.; Koparkar A. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J. Pharm. Sci. 2008, 9793942–56.
    1. Cheney M.; Shan N.; Healey E.; Hanna M.; Wojtas L.; Zaworotko M. J.; Sava V.; Song S.; Sanchez-Ramos J. Effects of Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine. Cryst. Growth Des. 2010, 101394–405.
    1. Stanton M. K.; Kelly R. C.; Colletti A.; Kiang Y. H.; Langley M.; Munson E. J.; Peterson M. L.; Roberts J.; Wells M. Improved pharmacokinetics of AMG 517 through co-crystallization. Part 1: comparison of two acids with corresponding amide co-crystals. J. Pharm. Sci. 2010, 9993769–78.
    1. Weyna D. R.; Cheney M. L.; Shan N.; Hanna M.; Zaworotko M. J.; Sava V.; Song S.; Sanchez-Ramos J. R. Improving Solubility and Pharmacokinetics of Meloxicam via Multiple-Component Crystal Formation. Mol. Pharmaceutics 2012, 972094–2102.
    1. Cheney M. L.; Weyna D. R.; Shan N.; Hanna M.; Wojtas L.; Zaworotko M. J. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J. Pharm. Sci. 2011, 10062172–81.
    1. Lin L. C.; Wang M. N.; Tseng T. Y.; Sung J. S.; Tsai T. H. Pharmacokinetics of (−)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J. Agric. Food Chem. 2007, 5541517–24.
    1. Warden B. A.; Smith L. S.; Beecher G. R.; Balentine D. A.; Clevidence B. A. Catechins are bioavailable in men and women drinking black tea throughout the day. J. Nutr. 2001, 13161731–7.
    1. Smith A. J.; Kavuru P.; Wojtas L.; Zaworotko M. J.; Shytle R. D. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol. Pharmaceutics 2011, 851867–76.
    1. Zobrist R. H.; Schmid B.; Feick A.; Quan D.; Sanders S. W. Pharmacokinetics of the R- and S-enantiomers of oxybutynin and N-desethyloxybutynin following oral and transdermal administration of the racemate in healthy volunteers. Pharm. Res. 2001, 1871029–34.

Source: PubMed

3
Sottoscrivi