In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica

Bruno Moukette Moukette, Constant Anatole Pieme, Jacques Romain Njimou, Cabral Prosper Nya Biapa, Bravi Marco, Jeanne Yonkeu Ngogang, Bruno Moukette Moukette, Constant Anatole Pieme, Jacques Romain Njimou, Cabral Prosper Nya Biapa, Bravi Marco, Jeanne Yonkeu Ngogang

Abstract

Background: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC.

Results: This study demonstrated that M. myristica has scavenging properties against DPPH(•), OH(•), NO(•), and ABTS(•) radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT) and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH); showed a significantly higher content in polyphenolic compounds (21.44 ± 0.24 mg caffeic acid/g dried extract) and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight) as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic), alcohols (tyrosol and OH-tyrosol), theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD), catalase and peroxidase activities.

Conclusion: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.

Figures

Figure 1
Figure 1
Reductive activities of the different plant extracts. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (Leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (Leaves) hydroethanolic extract; VIT C = Vitamin C.
Figure 2
Figure 2
FRAP antioxidant activities of the different plant extracts. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract; BHT:Butylated hydroxyl Toluene.
Figure 3
Figure 3
Phosphomolybdenum antioxidant activities of the different plant extracts. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract; BHT:Butylated hydroxyl Toluene.
Figure 4
Figure 4
Protective properties of plant extracts against lipid. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract; Vit C: Vitamin C. Pos Control: oxidant (positive) control. Neg Control: Normal (negative) control.
Figure 5
Figure 5
Lipo-peroxidative Inhibitory potential of plant extracts. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract; Vit C: Vitamin C. Pos Control: oxidant (positive) control. Neg Control: Normal (negative) control.
Figure 6
Figure 6
Protective properties of plant extracts: SOD activity. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract; Vit C: Vitamin C. Pos Control: oxidant (positive) control. Neg Control: Normal (negative) control.
Figure 7
Figure 7
Protective properties of plant extracts: catalase activity. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract; Vit C: Vitamin C. Pos Control: oxidant (positive) control. Neg Control: Normal (negative) control.
Figure 8
Figure 8
Protective properties of plant extracts: peroxidase activity. Values are expressed as mean ± SD of three replicates. In the same colon the values affected with different letter are significantly different at p<0.05. Vit C: Vitamin C; AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. myristica (leaves) hydroethanolic extract.
Figure 9
Figure 9
Correlation between antioxidant capacity and free radical scavenging properties of the extracts. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydro-ethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. Miristica (leaves) hydro-ethanolic extract; MOLYBDAT: Phosphomolybdenum test; Flavonol: Flavonol assay; Polyphenol: Polyphenol assay; Flavonoid: Flavonoid assay; NO: NO radical scavenging test; ABTS: ABTS radical scavenging test; DPPH: DPPH radical scavenging test; OH: OH radical scavenging test; RED ACT: reductive activity test; A: distribution of the samples around the F1 and F2 axis; B: projection of the samples and tests around the F1 and F2 axis.
Figure 10
Figure 10
Correlation between enzymes involved in oxidative stress and phenol contents of the extracts. AFE: M. myristica (leaves) ethanolic extract; AEH: M. myristica (Barks) hydroethanolic extract; AEE: M. myristica (Barks) ethanolic extract; AFH: M. Miristica (leaves) hydroethanolic extract; SOD: SOD activity test; Catalase: Catalase activity test; Peroxidase: Peroxidase activity test; FLavonols: Flavonol assay; Polyphen: Polyphenol assay; Flavonoids: Flavonoid assay; FRAP: FRAP antioxidant test; MDA: MDA assay; INHIB MDA: MDA inhibition percentage; A: distribution of the samples around the F1 and F2 axis; B: projection of the samples and tests around the F1 and F2 axis.
Figure 11
Figure 11
HPLC chromatograms of phenolic extracts from the leaves ofM. myristicarecorded at 280 nm (TR: 19.10: 3,4-OH benzoic acid; 33.49:apigenin; 25.67: caffeic acid; 23.48: catechine; 29.43: eugenol; 14.38; gallic acid; 25.11: O-coumaric; 21.91:OH-tyrosol; 30.52: P-coumaric acid. 42.19: quercetin; 29.45: rutin; 25.55: syringic acid; 17.35: theobromine; 21.77: tyrosol and 25.27: vanillic acid.).
Figure 12
Figure 12
HPLC chromatograms of phenolic extracts from the barks ofM. myristicarecorded at 280nm (TR: 19.10: 3,4-OH benzoic acid; 33.49:apigenin; 25.67: caffeic acid; 23.48: catechine; 29.43: eugenol; 14.38; gallic acid; 25.11: O-coumaric; 21.91:OH-tyrosol; 30.52: P-coumaric acid. 42.19: quercetin; 29.45: rutin; 25.55: syringic acid; 17.35: theobromine; 21.77: tyrosol and 25.27: vanillic acid.).

References

    1. Kumar M, Gupta V, Kumari P, Reddy C, Jha B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J Food Compos Anal. 2011;24:270–278. doi: 10.1016/j.jfca.2010.07.007.
    1. Nanfack P, Biapa N, Pieme C, Moor VA, Moukette B, Ngogang Y. The in vitro antisickling and antioxidant effects of aqueous extracts Zanthoxyllum heitzii on sickle cell disorder. BMC Complement Alternat Med. 2013;13:162. doi: 10.1186/1472-6882-13-162.
    1. Manirakiza D, Awono A, Owona H, Ingram V: “ Mobilisation et renforcement des capacités des petites et moyennes entreprises impliquées dans les filières des produits forestiers non ligneux en Afrique centrale ” : Etude de base de la filière fumbwa (gnetum spp.) Dans les provinces de l'équateur et de Kinshasa, RDC. CIFOR: GCP/RAF/408/EC 2009.
    1. Biapa N, Oben J, Ngogang J. Scavenging radical kinetic and Antianaemic Screening Properties of some Medicinal Plants used in Cameroon. International Journal of Applied Research in Natural Products. 2011;4:29–35.
    1. Choumessi A, Danel M, Chassaing S, Truchet I, Penlap V, Pieme A, et al. Characterization of the antiproliferative activity of Xylopia aethiopica. Cell Div. 2012;7:8. doi: 10.1186/1747-1028-7-8.
    1. Dimo T, Rakotonirina A, Tan P, Dongo E, Dongmo A, Kamtchouing P, et al. Antihypertensive effects of Dorstenia psilurus extract in fructose-fed hyperinsulinemic, hypertensive rats. Phytomedicine. 2001;8:101–106. doi: 10.1078/0944-7113-00014.
    1. Dongmo F, Oben E, Momo N, Mandob E. Phytochemical contituents and antioxydant potential of some cameroonian medicinal plants. Pharmacologyonline. 2007;2:436–452.
    1. Erkan N, Akgonen S, Ovat S, Goksel G, Ayranci E. Phenolic compounds profile and antioxidant activity of Dorystoechas hastata L. Boiss et Heldr Food Research International. 2011;44:3013–3020. doi: 10.1016/j.foodres.2011.07.015.
    1. Suhaj M. Spice antioxidants isolation and their antiradical activity: A review. J Food Compos Anal. 2006;19:531–537. doi: 10.1016/j.jfca.2004.11.005.
    1. Soory M. Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: Potential for therapeutic targeting. Infect Disord Drug Targets. 2009;9:400–414. doi: 10.2174/187152609788922537.
    1. Tapsell L, Hemphill I, Cobiac L, Patch C, Sullivan D, Fenech M, et al. Health benefits of herbs and spices: The past, the present, the future. Med J Aust. 2006;185:S4–S24.
    1. Pizzimenti S, Toaldo C, Pettazzoni P, Dianzani M, Barrera G. The “Two-Faced” Effects of Reactive Oxygen Species and the Lipid Peroxidation Product 4-Hydroxynonenal in the Hallmarks of Cancer. Cancers. 2010;2:338–363. doi: 10.3390/cancers2020338.
    1. Klaunig J, Kamendulis L. The role of oxidative stress in carcinogenesis. Annual Review of Pharmacological Toxicology. 2004;44:239–267. doi: 10.1146/annurev.pharmtox.44.101802.121851.
    1. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1:529–539. doi: 10.2174/1568026013394831.
    1. Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK: Bauhinia variegata Leaf Extracts Exhibit considerable Antibacterial, Antioxidant, and Anticancer Activities. BioMed Research International 2013, 2013
    1. Fang Y, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18:872–879. doi: 10.1016/S0899-9007(02)00916-4.
    1. Hailiwell B. Reactive oxygen species in living systems: source, biochemistry and role in human disease. Am J Med. 1991;91:14–20. doi: 10.1016/0002-9343(91)90279-7.
    1. Hemnani T, Parihar M. Reactive oxygen species and oxidative DNA damage. Indian Journal of Physiology and Pharmacologyonline. 1998;42:440–452.
    1. Israhad M, Chaudhuri P. Oxidant - antioxydant system : role and significance in human body. Indian J Exp Biol. 2002;40:1233–1239.
    1. Noda N, Wakasugi H. Cancer and Oxidative Stress. the Journal of the Japan Medical Association. 2000;124:1571–1574.
    1. Bakarnga-Via I, Hzounda J, Fokou P, Tchokouaha L, Gary-Bobo M, Gallud A, et al. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon. BMC Complementary and Alternative Medicine. 2014;14:125. doi: 10.1186/1472-6882-14-125.
    1. Menkem E, Fokou J, Tsague I, Chouadeu P, Bakarnga-Via I, Kamdem M, et al. Antifungal and Antioxidant Activities of Piptostigma calophyllum, Uvariodendron calophyllum and Uvariodendron molundense Growing in Cameroon. Journal of Biologically Active Products from Nature. 2012;2:110–118. doi: 10.1080/22311866.2012.10719117.
    1. Alam N, Hossain M, Khali M, Moniruzzaman M, Sulaiman S, Gan S. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complementary and Alternative Medicine. 2011;11:65. doi: 10.1186/1472-6882-11-65.
    1. Duthie S, Dobson V. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. Eur J Nutr. 1999;38:28–34. doi: 10.1007/s003940050043.
    1. Gul M, Ahmad F, Kondapi A, Qureshi I, Ghazi I: Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts - an in vitro study. BMC Complementary and Alternative Medicine 2013, 13(53).
    1. Kumar S, Kumar R, Dwivedi A, Pandey AK: In Vitro Antioxidant, Antibacterial, and Cytotoxic Activity and In Vivo Effect of Syngonium podophyllum and Eichhornia crassipes Leaf Extracts on Isoniazid Induced Oxidative Stress and Hepatic Markers. BioMed Research International 2014b, 2014.
    1. Hilmi Y, Abushama M, Abdalgadir H, Khalid A, Khalid H: A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional sudanese plants with anti-diabetic potential. BMC Complement Alternat Med 2014, 14(149).
    1. Mireille C: Le guide du préparateur en pharmacie d’Afrique noire. In. Edited by Ngcom E. Paris; 2001: 68.
    1. Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complementary and Alternative Medicine. 2013;13:120. doi: 10.1186/1472-6882-13-120.
    1. Silva S, Gomes L, Leitão F, Coelho V, Boas L. Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves Food Science Technology International. 2006;12:385–396. doi: 10.1177/1082013206070166.
    1. Saeed N, Khan M, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine. 2012;12:221. doi: 10.1186/1472-6882-12-221.
    1. Khoddami A, Wilkes M, Roberts T. Techniques for Analysis of Plant Phenolic Compounds. Molecules. 2013;18:2328–2375. doi: 10.3390/molecules18022328.
    1. Bhakta D, Siva R. Amelioration of oxidative stress in bio-membranes and macromolecules by non-toxic dye from Morinda tinctoria (Roxb.) roots. Food Chem Toxicol. 2012;50:2062–2069. doi: 10.1016/j.fct.2012.03.045.
    1. Carocho M, Ferreira I. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15–25. doi: 10.1016/j.fct.2012.09.021.
    1. Kumar S, Pandey S, Pandey AK: In Vitro Antibacterial, Antioxidant, and Cytotoxic Activities of Parthenium hysterophorus and Characterization of Extracts by LC-MS Analysis. BioMed Research International 2014a, 2014.
    1. Jeon C, Murray M. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152. doi: 10.1371/journal.pmed.0050152.
    1. Biapa P, Matei H, Bâlici S, Oben J, Ngogang J. Protective effects of stem bark of Harungana madgascariensis on the red blood cell membrane. BMC Complementary and Alternative Medicine. 2013;13:1–9. doi: 10.1186/1472-6882-13-98.
    1. Jeong J, Park J, Lee H, Ju S, Hong S, Lee J, et al. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food Chem Toxicol. 2009;47:525–529. doi: 10.1016/j.fct.2008.11.039.
    1. Shalaby E, Shanab S. Antioxidant compounds, assays of determination and mode of action. African Journal of Pharmacy and Pharmacology. 2013;7:528–539. doi: 10.5897/AJPP2013.3474.
    1. Blois M. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0.
    1. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
    1. Sreejayan N, Rao M. Nitric oxide scavenging activity by curcuminoids. J Pharm Pharmacol. 1997;49:105–107. doi: 10.1111/j.2042-7158.1997.tb06761.x.
    1. Yu W, Zhao Y, Shu B. The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food Chem. 2004;86:525–529. doi: 10.1016/j.foodchem.2003.08.037.
    1. Benzie F, Strain J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292.
    1. Prieto P, Pineda M, Aguilar M. Spectophotometric quantitative of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–341. doi: 10.1006/abio.1999.4019.
    1. Oyaizu M. Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr. 1986;44:307–315. doi: 10.5264/eiyogakuzashi.44.307.
    1. Singleton V, Rossi J. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–158.
    1. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide. Radicals Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2.
    1. Kumaran A, Karunakaran R. In vitro antioxidant activities of methanol extracts of Phyllanthus species from India. Lebens-Wiss Technologie. 2007;40:344–352. doi: 10.1016/j.lwt.2005.09.011.
    1. Gupta V, Sharma M. Protective Effect of Cinnamomum tejpata on Lipid Peroxide Formation in Isolated Rat Liver Homogenate. Curr Res J Biol Sci. 2010;2:246–249.
    1. Sinha A. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7.
    1. Misra H, Fridovich I. Estimation of superoxide dismutase. J Biochem. 1972;247:3170–3178.

Source: PubMed

3
Sottoscrivi