Socio-economic and demographic factors associated with snacking behavior in a large sample of French adults

Wendy Si Hassen, Katia Castetbon, Sandrine Péneau, Christine Tichit, Anouar Nechba, Aurélie Lampuré, France Bellisle, Serge Hercberg, Caroline Méjean, Wendy Si Hassen, Katia Castetbon, Sandrine Péneau, Christine Tichit, Anouar Nechba, Aurélie Lampuré, France Bellisle, Serge Hercberg, Caroline Méjean

Abstract

Background: Few studies have specifically focused on demographic and socio-economic characteristics associated with snacking in adults, whereas their identification could be useful for defining effective public health measures. The aim of our study was to assess the associations of these factors with daily snacking behavior and its dietary quality.

Methods: This cross-sectional study included 84,692 women and 23,491 men from the NutriNet-Santé cohort study. Occurrence of snacking, energy intake from snacks, snack nutrient, and energy densities were assessed using 24-h dietary records of weekdays at baseline. Associations between socio-economic and demographic factors (age, presence of children in the household, education, income, occupation), and snacking behavior were examined using multivariable logistic regression and analysis of covariance, stratified by sex and adjusted for total daily energy intake.

Results: Older individuals were more likely to snack during the day in both sexes while individuals with primary education (OR = 0.79 (0.71;0.87) in women; OR = 0.71 (0.60;0.83) in men), female employees (OR = 0.94 (0.89;0.99), and self-employed women were less likely to snack during the day. Older individuals, in particular middle-aged subjects, had higher snack nutrient density, and lower energy intake and density from snacks compared with younger adults. Presence of a child in the household was associated with higher energy density, lower nutrient density (in women), and lower energy intake from snacks (in men), compared with those who lived without a child in household. In low income individuals and manual workers, snacks had lower nutrient density and higher energy content than in higher socioeconomic categories. At last, energy intake from daily snacking occasions was higher in women with low education level.

Conclusions: Although snacking was less prevalent in low socioeconomic categories and young adults, their snacks had higher energy content and were of poorer nutrient density. Such findings provide useful information on mechanisms of social disparities in dietary behavior.

Trial registration: This study was conducted according to the guidelines laid down in the Declaration of Helsinki. All procedures were approved by the Institutional Review Board of the French Institute for Health and Medical Research (IRB Inserm No0000388FWA00005831) and the French Data Protection Authority (Commission Nationale Informatique et Libertés No.908450 and No.909216). Clinical Trial no. NCT03335644.

Keywords: Demographic factors; Dietary behavior; Eating behavior; Nutritional content; Snack; Snacking; Socioeconomic position.

Conflict of interest statement

Ethics approval and consent to participate

This study was conducted according to the guidelines laid down in the Declaration of Helsinki, and all procedures were approved by the Institutional Review Board of the French Institute for Health and Medical Research (IRB Inserm No. 0000388FWA00005831) and the French Data Protection Authority (Commission Nationale Informatique et Libertés No. 908450 and No. 909216). Electronic informed consent was obtained from all participants.

Consent for publication

Consent form available upon request.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Bellisle F, Dalix AM, Mennen L, Galan P, Hercberg S, de Castro JM, Gausseres N. Contribution of snacks and meals in the diet of French adults: a diet-diary study. Physiol Behav. 2003;79:183–189. doi: 10.1016/S0031-9384(03)00088-X.
    1. Piernas C, Popkin BM. Snacking increased among U.S. adults between 1977 and 2006. J Nutr. 2010;140:325–332. doi: 10.3945/jn.109.112763.
    1. Zizza C.; Siega-Riz A.M.; Popkin B.M. Significant increase in young adults’ snacking between 1977-1978 and 1994-1996 represents a cause for concern! Prev Med 2001, 32, 303-310.
    1. Kerver JM, Yang EJ, Obayashi S, Bianchi L, Song WO. Meal and snack patterns are associated with dietary intake of energy and nutrients in US adults. J Am Diet Assoc. 2006;106:46–53. doi: 10.1016/j.jada.2005.09.045.
    1. Miller R, Benelam B, Stanner SA, Buttriss JL. Is snacking good or bad for health: an overview. Nutr Bull. 2013;38:302–322. doi: 10.1111/nbu.12042.
    1. Hess JM, Jonnalagadda SS, Slavin JL. What is a snack, why do we snack, and how can we choose better snacks? A review of the definitions of snacking, motivations to snack, contributions to dietary intake, and recommendations for improvement. Adv Nutr. 2016;7:466–475. doi: 10.3945/an.115.009571.
    1. Bellisle F. Meals and snacking, diet quality and energy balance. Physiol Behav. 2014;134:38–43. doi: 10.1016/j.physbeh.2014.03.010.
    1. Murakami K, Livingstone MB. Associations between meal and snack frequency and diet quality in US adults: National Health and nutrition examination survey 2003-2012. J Acad Nutr Diet. 2016;
    1. Zizza CA, Arsiwalla DD, Ellison KJ. Contribution of snacking to older adults’ vitamin, carotenoid, and mineral intakes. J Am Diet Assoc. 2010;110:768–772. doi: 10.1016/j.jada.2010.02.009.
    1. Zizza CA, Tayie FA, Lino M. Benefits of snacking in older Americans. J Am Diet Assoc. 2007;107:800–806. doi: 10.1016/j.jada.2007.02.002.
    1. Drummond SE, Crombie NE, Cursiter MC, Kirk TR. Evidence that eating frequency is inversely related to body weight status in male, but not female, non-obese adults reporting valid dietary intakes. Int J Obes Relat Metab Disord. 1998;22:105–112. doi: 10.1038/sj.ijo.0800552.
    1. Ovaskainen ML, Reinivuo H, Tapanainen H, Hannila ML, Korhonen T, Pakkala H. Snacks as an element of energy intake and food consumption. Eur J Clin Nutr. 2006;60:494–501. doi: 10.1038/sj.ejcn.1602343.
    1. Hampl JS, Heaton CL, Taylor CA. Snacking patterns influence energy and nutrient intakes but not body mass index. J Hum Nutr Diet. 2003;16:3–11. doi: 10.1046/j.1365-277X.2003.00417.x.
    1. de Graaf C. Effects of snacks on energy intake: an evolutionary perspective. Appetite. 2006;47:18–23. doi: 10.1016/j.appet.2006.02.007.
    1. Prentice A, Jebb S. Energy intake/physical activity interactions in the homeostasis of body weight regulation. Nutr Rev. 2004;62:S98–104. doi: 10.1111/j.1753-4887.2004.tb00095.x.
    1. Plachta-Danielzik S, Landsberg B, Bosy-Westphal A, Johannsen M, Lange D, Muller J. Energy gain and energy gap in normal-weight children: longitudinal data of the KOPS. Obesity (Silver Spring) 2008;16:777–783. doi: 10.1038/oby.2008.5.
    1. Escalon H, Bossard C, Beck F. Baromètre santé 2008. Saint-Denis: INPES; 2009.
    1. Hartmann C, Siegrist M, van der Horst K. Snack frequency: associations with healthy and unhealthy food choices. Public Health Nutr. 2013;16:1487–1496. doi: 10.1017/S1368980012003771.
    1. Duffey KJ, Pereira RA, Popkin BM. Prevalence and energy intake from snacking in Brazil: analysis of the first nationwide individual survey. Eur J Clin Nutr. 2013;67:868–874. doi: 10.1038/ejcn.2013.60.
    1. Gazan R, Bechaux C, Crepet A, Sirot V, Drouillet-Pinard P, Dubuisson C, Havard S. Dietary patterns in the French adult population: a study from the second French national cross-sectional dietary survey (INCA2) (2006-2007) Br J Nutr. 2016;116:300–315. doi: 10.1017/S0007114516001549.
    1. Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, Kesse E, Touvier M, Galan P. The Nutrinet-Sante study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health. 2010;10:242. doi: 10.1186/1471-2458-10-242.
    1. INSEE (French National Institute of statistics) definition of qualification level. Available online: . Accessed 12 Dec 2016.
    1. Vergnaud AC, Touvier M, Mejean C, Kesse-Guyot E, Pollet C, Malon A, Castetbon K, Hercberg S. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Sante study. Int J Public Health. 2011;56:407–417. doi: 10.1007/s00038-011-0257-5.
    1. INSEE (French National Institute of Statistics) Definition of occupational categories. Available online: . (Accessed on 28 June 2016).
    1. INSEE (French National Institute of Statistics) Definition of consumption unit. Available online: . (Accessed on 12 Feb 2015).
    1. Lassale C, Castetbon K, Laporte F, Camilleri GM, Deschamps V, Vernay M, Faure P, Hercberg S, Galan P, Kesse-Guyot E. Validation of a web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br J Nutr. 2015;113:953–962. doi: 10.1017/S0007114515000057.
    1. Lassale C, Castetbon K, Laporte F, Deschamps V, Vernay M, Camilleri GM, Faure P, Hercberg S, Galan P, Kesse-Guyot E. Correlations between fruit, vegetables, fish, vitamins, and fatty acids estimated by web-based nonconsecutive dietary records and respective biomarkers of nutritional status. J Acad Nutr Diet. 2015;116(3):427–38.
    1. Touvier M, Kesse-Guyot E, Mejean C, Pollet C, Malon A, Castetbon K, Hercberg S. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr. 2011;105:1055–1064. doi: 10.1017/S0007114510004617.
    1. Le Moullec N, Deheeger M, Preziosi P, Montero P, Valeix P, Rolland-Cachera MF, Potier de Courcy G, Christides JP, Galan P, Hercberg S. Validation du manuel photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX. Cah Nutr Diet. 1996;31:158–164.
    1. Arnault N, Caillot L, Castetbon K, Coronel S, Deschamps V, Fezeu L, Figuette M, Galan P, Guénard-Charpentier F, Hercberg S, Houet D, Julia C, Kesse-Guyot E, Lanotte M, Lisi A, Lucas F, Méjean C, Mohtadji A, Péneau S, Poulhès L, Salanave B, Tisseron E, Touvier M, Vernay M, Voegtlin C. Table de Composition des aliments NutriNet-Santé. Paris: Editions Économica; 2013.
    1. Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord. 2000;24:1119–1130. doi: 10.1038/sj.ijo.0801376.
    1. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39:5–41.
    1. Ello-Martin JA, Ledikwe JH, Rolls BJ. The influence of food portion size and energy density on energy intake: implications for weight management. Am J Clin Nutr. 2005;82:236S–241S. doi: 10.1093/ajcn/82.1.236S.
    1. Fulgoni VL, III, Keast DR, Drewnowski A. Development and validation of the nutrient-rich foods index: a tool to measure nutritional quality of foods. J Nutr. 2009;139:1549–1554. doi: 10.3945/jn.108.101360.
    1. U.S.Food & Drug Administration Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients). Available online: . (Accessed on 2 Dec 2016).
    1. Riou J, Lefevre T, Parizot I, Lhuissier A, Chauvin P. Is there still a French eating model? A taxonomy of eating behaviors in adults living in the Paris metropolitan area in 2010. PLoS One. 2015;10:e0119161. doi: 10.1371/journal.pone.0119161.
    1. Neumark-Sztainer D, Hannan PJ, Story M, Croll J, Perry C. Family meal patterns: associations with sociodemographic characteristics and improved dietary intake among adolescents. J Am Diet Assoc. 2003;103:317–322. doi: 10.1053/jada.2003.50048.
    1. Sjoberg A, Hallberg L, Hoglund D, Hulthen L. Meal pattern, food choice, nutrient intake and lifestyle factors in the Goteborg adolescence study. Eur J Clin Nutr. 2003;57:1569–1578. doi: 10.1038/sj.ejcn.1601726.
    1. Savige G, MacFarlane A, Ball K, Worsley A, Crawford D. Snacking behaviours of adolescents and their association with skipping meals. Int J Behav Nutr Phys Act. 2007;4:36. doi: 10.1186/1479-5868-4-36.
    1. Liu JL, Han B, Cohen DA. Associations between eating occasions and places of consumption among adults. Appetite. 2015;87:199–204. doi: 10.1016/j.appet.2014.12.217.
    1. Renner B, Sproesser G, Strohbach S, Schupp HT. Why we eat what we eat. The eating motivation survey (TEMS) Appetite. 2012;59:117–128. doi: 10.1016/j.appet.2012.04.004.
    1. Sonnentag S, Pundt A, Venz L. Distal and proximal predictors of snacking at work: a daily-survey study. J Appl Psychol. 2017;102:151–162. doi: 10.1037/apl0000162.
    1. O'Connor DB, Jones F, Conner M, McMillan B, Ferguson E. Effects of daily hassles and eating style on eating behavior. Health Psychol. 2008;27:S20–S31. doi: 10.1037/0278-6133.27.1.S20.
    1. Eldridge JD, Devine CM, Wethington E, Aceves L, Phillips-Caesar E, Wansink B, Charlson ME. Environmental influences on small eating behavior change to promote weight loss among black and Hispanic populations. Appetite. 2016;96:129–137. doi: 10.1016/j.appet.2015.09.011.
    1. Niven P, Scully M, Morley B, Baur L, Crawford D, Pratt IS, Wakefield M. What factors are associated with frequent unhealthy snack-food consumption among Australian secondary-school students? Public Health Nutr. 2015;18:2153–2160. doi: 10.1017/S1368980014002675.
    1. Larson N, Miller JM, Eisenberg ME, Watts AW, Story M, Neumark-Sztainer D. Multicontextual correlates of energy-dense, nutrient-poor snack food consumption by adolescents. Appetite. 2017;112:23–34. doi: 10.1016/j.appet.2017.01.008.
    1. Pearson N, Griffiths P, Biddle SJ, Johnston JP, Haycraft E. Individual, behavioural and home environmental factors associated with eating behaviours in young adolescents. Appetite. 2017;112:35–43. doi: 10.1016/j.appet.2017.01.001.
    1. Ranjit N, Wilkinson AV, Lytle LM, Evans AE, Saxton D, Hoelscher DM. Socioeconomic inequalities in children's diet: the role of the home food environment. Int J Behav Nutr Phys Act. 2015;12(Suppl 1):S4. doi: 10.1186/1479-5868-12-S1-S4.
    1. Painter JE, Wansink B, Hieggelke JB. How visibility and convenience influence candy consumption. Appetite. 2002;38:237–238. doi: 10.1006/appe.2002.0485.
    1. AFSSA - French Agency for Food, E.a.O.H.&.S. Étude Individuelle Nationale des Consommations Alimentaires 2 (INCA 2) (2006-2007). Paris: AFSSA; 2009.
    1. Lampure A, Deglaire A, Schlich P, Castetbon K, Peneau S, Hercberg S, Mejean C. Liking for fat is associated with sociodemographic, psychological, lifestyle and health characteristics. Br J Nutr. 2014;112:1353–1363. doi: 10.1017/S0007114514002050.
    1. Kant AK, Graubard BI. 40-year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet. 2015;115:50–63. doi: 10.1016/j.jand.2014.06.354.
    1. Lhuissier A, Tichit C, Caillavet F, Cardon P, Masullo A, Martin-Fernandez J, Parizot I, Chauvin P. Who still eats three meals a day? Findings from a quantitative survey in the Paris area. Appetite. 2013;63:59–69. doi: 10.1016/j.appet.2012.12.012.
    1. Si HW, Castetbon K, Cardon P, Enaux C, Nicolaou M, Lien N, Terragni L, Holdsworth M, Stronks K, Hercberg S, Mejean C. Socioeconomic indicators are independently associated with nutrient intake in French adults: a DEDIPAC study. Nutrients. 2016;8:158. doi: 10.3390/nu8030158.
    1. Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr. 2008;87:1107–1117. doi: 10.1093/ajcn/87.5.1107.
    1. Irala-Estevez JD, Groth M, Johansson L, Oltersdorf U, Prattala R, Martinez-Gonzalez MA. A systematic review of socio-economic differences in food habits in Europe: consumption of fruit and vegetables. Eur J Clin Nutr. 2000;54:706–714. doi: 10.1038/sj.ejcn.1601080.
    1. Bozon M, Lemel Y. Les petits profits du travail salarié: moments, produits et plaisirs dérobés. Rev Fr Sociol. 1990:101–27.
    1. Clendenen VI, Herman CP, Polivy J. Social facilitation of eating among friends and strangers. Appetite. 1994;23:1–13. doi: 10.1006/appe.1994.1030.
    1. Kant AK, Graubard BI. Secular trends in the association of socio-economic position with self-reported dietary attributes and biomarkers in the US population: National Health and nutrition examination survey (NHANES) 1971-1975 to NHANES 1999-2002. Public Health Nutr. 2007;10:158–167. doi: 10.1017/S1368980007246749.
    1. McKinnon L, Giskes K, Turrell G. The contribution of three components of nutrition knowledge to socio-economic differences in food purchasing choices. Public Health Nutr. 1814;2014:17.
    1. Beydoun MA, Wang Y. Do nutrition knowledge and beliefs modify the association of socio-economic factors and diet quality among US adults? Prev Med. 2008;46:145–153. doi: 10.1016/j.ypmed.2007.06.016.
    1. Darmon N, Drewnowski A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr Rev. 2015;73:643–660. doi: 10.1093/nutrit/nuv027.
    1. Dijkstra SC, Neter JE, Brouwer IA, Huisman M, Visser M. Motivations to eat healthily in older Dutch adults--a cross sectional study. Int J Behav Nutr Phys Act. 2014;11:141. doi: 10.1186/s12966-014-0141-9.
    1. Konttinen H, Sarlio-Lahteenkorva S, Silventoinen K, Mannisto S, Haukkala A. Socio-economic disparities in the consumption of vegetables, fruit and energy-dense foods: the role of motive priorities. Public Health Nutr. 2013;16:873–882. doi: 10.1017/S1368980012003540.
    1. Inserm. Inégalités sociales de santé en lien avec l’alimentation et l’activité physique. Paris: Les éditions Inserm, 2014, XVI-731 p. - (Expertise collective). .
    1. Allirot X, Saulais L, Seyssel K, Graeppi-Dulac J, Roth H, Charrie A, Drai J, Goudable J, Blond E, Disse E, Laville M. An isocaloric increase of eating episodes in the morning contributes to decrease energy intake at lunch in lean men. Physiol Behav. 2013;110-111:169–178. doi: 10.1016/j.physbeh.2013.01.009.
    1. Castetbon K, Vernay M, Malon A, Salanave B, Deschamps V, Roudier C, Oleko A, Szego E, Hercberg S. Dietary intake, physical activity and nutritional status in adults: the French nutrition and health survey (ENNS, 2006-2007) Br J Nutr. 2009;102:733–743. doi: 10.1017/S0007114509274745.
    1. Galea S, Tracy M. Participation rates in epidemiologic studies. Ann Epidemiol. 2007;17:643–653. doi: 10.1016/j.annepidem.2007.03.013.
    1. Drewnowski A. Defining nutrient density: development and validation of the nutrient rich foods index. J Am Coll Nutr. 2009;28:421S–426S. doi: 10.1080/07315724.2009.10718106.

Source: PubMed

3
Sottoscrivi