Design, development and validation of a new laryngo-pharyngeal endoscopic esthesiometer and range-finder based on the assessment of air-pulse variability determinants

Luis F Giraldo-Cadavid, Luis Mauricio Agudelo-Otalora, Javier Burguete, Mario Arbulu, William Daniel Moscoso, Fabio Martínez, Andrés Felipe Ortiz, Juan Diaz, Jaime A Pantoja, Andrés Felipe Rueda-Arango, Secundino Fernández, Luis F Giraldo-Cadavid, Luis Mauricio Agudelo-Otalora, Javier Burguete, Mario Arbulu, William Daniel Moscoso, Fabio Martínez, Andrés Felipe Ortiz, Juan Diaz, Jaime A Pantoja, Andrés Felipe Rueda-Arango, Secundino Fernández

Abstract

Background: Laryngo-pharyngeal mechano-sensitivity (LPMS) is involved in dysphagia, sleep apnea, stroke, irritable larynx syndrome and cough hypersensitivity syndrome among other disorders. These conditions are associated with a wide range of airway reflex abnormalities. However, the current device for exploring LPMS is limited because it assesses only the laryngeal adductor reflex during fiber-optic endoscopic evaluations of swallowing and requires a high degree of expertise to obtain reliable results, introducing intrinsic expert variability and subjectivity.

Methods: We designed, developed and validated a new air-pulse laryngo-pharyngeal endoscopic esthesiometer with a built-in laser range-finder (LPEER) based on the evaluation and control of air-pulse variability determinants and on intrinsic observer variability and subjectivity determinants of the distance, angle and site of stimulus impact. The LPEER was designed to be capable of delivering precise and accurate stimuli with a wide range of intensities that can explore most laryngo-pharyngeal reflexes.

Results: We initially explored the potential factors affecting the reliability of LPMS tests and included these factors in a multiple linear regression model. The following factors significantly affected the precision and accuracy of the test (P < 0.001): the tube conducting the air-pulses, the supply pressure of the system, the duration of the air-pulses, and the distance and angle between the end of the tube conducting the air-pulses and the site of impact. To control all of these factors, an LPEER consisting of an air-pulse generator and an endoscopic laser range-finder was designed and manufactured. We assessed the precision and accuracy of the LPEER's stimulus and range-finder according to the coefficient of variation (CV) and by looking at the differences between the measured properties and the desired values, and we performed a pilot validation on ten human subjects. The air-pulses and range-finder exhibited good precision and accuracy (CV < 0.06), with differences between the desired and measured properties at <3 % and a range-finder measurement error of <1 mm. The tests in patients demonstrated obtainable and reproducible thresholds for the laryngeal adductor, cough and gag reflexes.

Conclusions: The new LPEER was capable of delivering precise and accurate stimuli for exploring laryngo-pharyngeal reflexes.

Keywords: Accuracy; Airway; Biomedical engineering; Biomedical equipment; Biomedical imaging; Bronchoscopy; Calibration; Deglutition; Endoscopes; Esthesiometer; Fiber lasers; Larynx; Mechanoreceptor; Medical diagnosis; Optical fibers; Pharynx; Range finder; Reflex; Reliability; Repeatability and reproducibility of results; Sensory thresholds; Telemeter.

Figures

Fig. 1
Fig. 1
Air-pulse generator block diagram
Fig. 2
Fig. 2
Diagram of the LPEER and endoscope assembly, where the air-pulse path (blue) and the optical fiber (red) represent a typical configuration
Fig. 3
Fig. 3
Sketch of the different configurations to measure pressures. a Calibration setup, where the tube is connected to the calibration port I2 (see Fig. 1). b Pressure drop measurement using the Kistler probe 7261 using a 3-way stopcock open to the atmosphere. c Assembly to measure the pressure of the air-pulses and the effect of the distance and impact angle. d Assembly similar to that used by Aviv and Hammer to measure the air-pulses [29, 31, 34]. e Assembly to measure the impact force (pressure) using a precision balance. In this last case, the balance plate is horizontal, and the air-pulses arrive from the top. f Picture of the Kistler sensor, where the cover and the transducer can be distinguished. g Sensor MPX2010D, where the air-pulse impacts the cavity hole that is placed in face of the distal end in the Aviv and Hammer studies configuration (d)
Fig. 4
Fig. 4
Optical fiber assembly, range-finder polar grid and distance calculation. a Laser optical fiber assembly at the endoscope distal end; b polar grid; and c distance calculation using a pinhole camera model [41]. 1 polar grid, 2 image captured from the target surface, 3 center of the polar grid (coincides with the center of the captured image); the polar grid includes circles corresponding to the estimated distances between the endoscope distal end and the target surface as follows: 5: 1.78 mm (used to center the endoscopic camera), 6 3, 7:6, 8:9, 9:12, and 10:15 mm. 4 Laser spot. Distance calculation: a the distance used in the pin-hole camera model from the focal point (camera point) to the image plane; b the distance between the real point of the laser spot impact and the point of intersection of the camera model axis (endoscope axis) and the object plane axis; c the distance between the point of impact of the laser spot if the laser axis were parallel to the endoscope axis and the real point of impact of the laser spot (only the radial component is considered); L the distance between the laser optical fiber (laser axis) and the axis of the camera (endoscope axis) on the image plane; x the distance between the camera image plane and the object plane in millimeters; and y the distance on the image plane between the centroid of the laser spot and the center of the image in pixels (radius)
Fig. 5
Fig. 5
Distance measuring block
Fig. 6
Fig. 6
Air-pulse visualization in a dark room using chemical fog. The air-pulse morphology is similar to a vortex ring
Fig. 7
Fig. 7
Distance determined using the endoscopic laser range-finder (telemeter) vs distance determined using the high-precision micrometer. The middle line represents the linear regression line and the upper and lower lines represents its 95 % confidence interval (95 % CI)

References

    1. Miyaji H, Hironaga N, Umezaki T, Hagiwara K, Shigeto H, Sawatsubashi M, et al. Neuromagnetic detection of the laryngeal area: sensory-evoked fields to air-puff stimulation. NeuroImage. 2013;88C:162–169.
    1. de Carlos F, Cobo J, Macías E, Feito J, Cobo T, Calavia MG, et al. The Sensory Innervation of the Human Pharynx: searching for Mechanoreceptors. Anat Rec. 2013;296(11):1735–1746. doi: 10.1002/ar.22792.
    1. Paydarfar D. Protecting the airway during swallowing: what is the role for afferent surveillance? Head Neck. 2011;33(Suppl 1):S26–S29. doi: 10.1002/hed.21907.
    1. Dedhia RC, Rosen CA, Soose RJ. What is the role of the larynx in adult obstructive sleep apnea? Laryngoscope. 2014;124(4):1029–1034. doi: 10.1002/lary.24494.
    1. Nguyen AT, Jobin V, Payne R, Beauregard J, Naor N, Kimoff RJ. Laryngeal and velopharyngeal sensory impairment in obstructive sleep apnea. Sleep. 2005;28(5):585–593.
    1. Wang X, Ouyang Y, Wang Z, Zhao G, Liu L, Bi Y. Obstructive sleep apnea and risk of cardiovascular disease and all-cause mortality: a meta-analysis of prospective cohort studies. Int J Cardiol. 2013;169(3):207–214. doi: 10.1016/j.ijcard.2013.08.088.
    1. World Health Organization. Global health observatory data repository. 2012 Mortality and global health estimates. Geneva: WHO. 2012. . Accessed 11 Jul 2015.
    1. Aviv JE, Kim T, Sacco RL, Kaplan S, Goodhart K, Diamond B, et al. FEESST: a new bedside endoscopic test of the motor and sensory components of swallowing. Ann Otol Rhinol Laryngol. 1998;107(5 Pt 1):378–387.
    1. Aviv JE, Spitzer J, Cohen M, Ma G, Belafsky P, Close LG. Laryngeal adductor reflex and pharyngeal squeeze as predictors of laryngeal penetration and aspiration. Laryngoscope. 2002;112(2):338–341. doi: 10.1097/00005537-200202000-00025.
    1. Setzen M, Cohen MA, Mattucci KF, Perlman PW, Ditkoff MK. Laryngopharyngeal sensory deficits as a predictor of aspiration. Otolaryngol Head Neck Surg. 2001;124(6):622–624. doi: 10.1067/mhn.2001.116035.
    1. Aviv JE, Sacco RL, Thomson J, Tandon R, Diamond B, Martin JH, et al. Silent laryngopharyngeal sensory deficits after stroke. Ann Otol Rhinol Laryngol. 1997;106(2):87–93. doi: 10.1177/000348949710600201.
    1. Aviv JE, Martin JH, Sacco RL, Zagar D, Diamond B, Keen MS, et al. Supraglottic and pharyngeal sensory abnormalities in stroke patients with dysphagia. Ann Otol Rhinol Laryngol. 1996;105(2):92–97. doi: 10.1177/000348949610500202.
    1. Aviv JE, Sacco RL, Mohr JP, Thompson JL, Levin B, Sunshine S, et al. Laryngopharyngeal sensory testing with modified barium swallow as predictors of aspiration pneumonia after stroke. Laryngoscope. 1997;107(9):1254–1260. doi: 10.1097/00005537-199709000-00018.
    1. Onofri SM, Cola PC, Berti LC, da Silva RG, Dantas RO. Correlation between laryngeal sensitivity and penetration/aspiration after stroke. Dysphagia. 2014;29(2):256–261. doi: 10.1007/s00455-013-9504-7.
    1. Kertscher B, Speyer R, Fong E, Georgiou AM, Smith M. Prevalence of oropharyngeal dysphagia in the Netherlands: a telephone survey. Dysphagia. 2015;30(2):114–120. doi: 10.1007/s00455-014-9584-z.
    1. Aviv JE. Prospective, randomized outcome study of endoscopy versus modified barium swallow in patients with dysphagia. Laryngoscope. 2000;110(4):563–574. doi: 10.1097/00005537-200004000-00008.
    1. Ludlow CL. Central nervous system control of interactions between vocalization and respiration in mammals. Head Neck. 2011;33(Suppl 1):S21–S25. doi: 10.1002/hed.21904.
    1. Morrison M, Rammage L, Emami AJ. The irritable larynx syndrome. J Voice. 1999;13(3):447–455. doi: 10.1016/S0892-1997(99)80049-6.
    1. Bucca CB, Bugiani M, Culla B, Guida G, Heffler E, Mietta S, et al. Chronic cough and irritable larynx. J Allergy Clin Immunol. 2011;127(2):412–419. doi: 10.1016/j.jaci.2010.10.038.
    1. Chung KF, Pavord ID. Prevalence, pathogenesis, and causes of chronic cough. Lancet. 2008;371(9621):1364–1374. doi: 10.1016/S0140-6736(08)60595-4.
    1. Morice AH, Millqvist E, Belvisi MG, Bieksiene K, Birring SS, Chung KF, et al. Expert opinion on the cough hypersensitivity syndrome in respiratory medicine. Eur Respir J. 2014;44(5):1132–1148. doi: 10.1183/09031936.00218613.
    1. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–955. doi: 10.1016/S0140-6736(10)61156-7.
    1. Ebihara S, Ebihara T, Gui P, Osaka K, Sumi Y, Kohzuki M. Thermal taste and anti-aspiration drugs: a novel drug discovery against pneumonia. Curr Pharm Des. 2014;20(16):2755–2759. doi: 10.2174/13816128113199990567.
    1. Rofes L, Arreola V, Lopez I, Martin A, Sebastian M, Ciurana A, et al. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction. Neurogastroenterol Motil. 2013;25(11):888–e701. doi: 10.1111/nmo.12211.
    1. Lozano CA, Kaczmarek KA, Santello M. Electrotactile stimulation on the tongue: intensity perception, discrimination, and cross-modality estimation. Somatosens Mot Res. 2009;26(2):50–63. doi: 10.1080/08990220903158797.
    1. Pauloski BR, Logemann JA, Rademaker AW, Lundy D, Sullivan PA, Newman LA, et al. Effects of enhanced bolus flavors on oropharyngeal swallow in patients treated for head and neck cancer. Head Neck. 2013;35(8):1124–1131. doi: 10.1002/hed.23086.
    1. Teson M, Calonge M, Fernandez I, Stern ME, Gonzalez-Garcia MJ. Characterization by Belmonte’s gas esthesiometer of mechanical, chemical, and thermal corneal sensitivity thresholds in a normal population. Invest Ophthalmol Vis Sci. 2012;53(6):3154–3160. doi: 10.1167/iovs.11-9304.
    1. Golebiowski B, Papas E, Stapleton F. Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet-Bonnet aesthesiometer. Exp Eye Res. 2011;92(5):408–413. doi: 10.1016/j.exer.2011.02.016.
    1. Aviv JE, Martin JH, Keen MS, Debell M, Blitzer A. Air-pulse quantification of supraglottic and pharyngeal sensation: a new technique. Ann Otol Rhinol Laryngol. 1993;102(10):777–780. doi: 10.1177/000348949310201007.
    1. Aviv JE, Martin JH, inventors; The Trustees Of Columbia University In The City Of New York, assignee. Apparatus and method to objectively measure sensory discrimination thresholds in the upper aero digestive tract. United States patent US6036655. 2000 Nov 1, 1995.
    1. Aviv JE, Martin JH, Kim T, Sacco RL, Thomson JE, Diamond B, et al. Laryngopharyngeal sensory discrimination testing and the laryngeal adductor reflex. Ann Otol Rhinol Laryngol. 1999;108(8):725–730. doi: 10.1177/000348949910800802.
    1. Aviv JE. Sensory discrimination in the larynx and hypopharynx. Otolaryngol Head Neck Surg. 1997;116(3):331–334. doi: 10.1016/S0194-5998(97)70268-7.
    1. Cunningham JJ, Halum SL, Butler SG, Postma GN. Intraobserver and interobserver reliability in laryngopharyngeal sensory discrimination thresholds: a pilot study. Ann Otol Rhinol Laryngol. 2007;116(8):582–588. doi: 10.1177/000348940711600805.
    1. Hammer MJ. Design of a new somatosensory stimulus delivery device for measuring laryngeal mechanosensory detection thresholds in humans. IEEE Trans Biomed Eng. 2009;56(4):1154–1159. doi: 10.1109/TBME.2008.2007968.
    1. Widdicombe J. Airway receptors. Respir Physiol. 2001;125(1–2):3–15. doi: 10.1016/S0034-5687(00)00201-2.
    1. Batchelor GK. An introduction to fluid dynamics. Cambridge: Cambridge University Press; 1967.
    1. Fabris D, Liepmann D, Marcus D. Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys Fluids. 1996;8(10):2640–2649. doi: 10.1063/1.869049.
    1. Cheng M, Lou J, Luo L-S. Numerical study of a vortex ring impacting a flat wall. J Fluid Mech. 2010;660:430–455. doi: 10.1017/S0022112010002727.
    1. Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
    1. Grushka M, Sessle BJ, Howley TP. Psychophysical assessment of tactile, pain and thermal sensory functions in burning mouth syndrome. Pain. 1987;28(2):169–184. doi: 10.1016/0304-3959(87)90114-X.
    1. Barbes B, Azcona JD, Prieto E, Foronda JM, Garcia M, Burguete J. Development and clinical evaluation of a simple optical method to detect and measure patient external motion. J Appl Clin Med Phys. 2015;16(5):306–321.
    1. Giraldo-Cadavid LF. Fiberoptic endoscopic evaluation of swallowing with sensory test (FEESST) protocol for the validation of a laryngo-pharyngeal Endoscopic esthesiometer and rangefinder (LPEER). 2013. . Accessed 22 Aug 2015.
    1. Gates J, Hartnell GG, Gramigna GD. Videofluoroscopy and swallowing studies for neurologic disease: a primer1. Radiographics. 2006;26(1):e22. doi: 10.1148/rg.e22.
    1. Bland JM, Altman DG. Statistics Notes: measurement error proportional to the mean. BMJ. 1996;313(7049):106. doi: 10.1136/bmj.313.7049.106.
    1. Giraldo LF, Agudelo M, Arbulu M, Ortiz F, Burguete J, Fernandez S. Controlling the variability of air-pulses to determine the thresholds of laryngeal-pharyngeal reflexes using a novel device. Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International Conference on 2013. doi:10.1109/bibe.2013.6701652. the free accepted version can be downloaded at: . Accessed 10 Oct 2015.
    1. Harman G. Pressure Sensors. In: Wilson JS, editor. Sensor technology handbook. Burlington: Newnes; 2005. pp. 411–456.
    1. Regulators Nesbitt B. In: Handbook of valves and actuators. Nesbitt B, editor. Oxford: Butterworth-Heinemann; 2007. pp. 143–150.
    1. Aviv JE, Kim T, Thomson JE, Sunshine S, Kaplan S, Close LG. Fiberoptic endoscopic evaluation of swallowing with sensory testing (FEESST) in healthy controls. Dysphagia. 1998;13(2):87–92. doi: 10.1007/PL00009561.
    1. Speyer R, Baijens L, Heijnen M, Zwijnenberg I. Effects of therapy in oropharyngeal dysphagia by speech and language therapists: a systematic review. Dysphagia. 2010;25(1):40–65. doi: 10.1007/s00455-009-9239-7.
    1. Garon BR, Sierzant T, Ormiston C. Silent aspiration: results of 2,000 video fluoroscopic evaluations. J Neurosci Nurs. 2009;41(4):178–187. doi: 10.1097/JNN.0b013e3181aaaade.
    1. Addington WR, Stephens RE, Gilliland KA. Assessing the laryngeal cough reflex and the risk of developing pneumonia after stroke: an interhospital comparison. Stroke. 1999;30(6):1203–1207. doi: 10.1161/01.STR.30.6.1203.
    1. Aviv JE, Murry T, Zschommler A, Cohen M, Gartner C. Flexible endoscopic evaluation of swallowing with sensory testing: patient characteristics and analysis of safety in 1,340 consecutive examinations. Ann Otol Rhinol Laryngol. 2005;114(3):173–176. doi: 10.1177/000348940511400301.

Source: PubMed

3
Sottoscrivi