Effects of Capacitive-Resistive Electric Transfer on Sports Performance in Paralympic Swimmers: A Stopped Randomized Clinical Trial

Luis De Sousa-De Sousa, Hugo G Espinosa, Jose Luis Maté-Muñoz, Maria Del Carmen Lozano-Estevan, Sara Cerrolaza-Tudanca, Manuel Rozalén-Bustín, Samuel Fernández-Carnero, Pablo García-Fernández, Luis De Sousa-De Sousa, Hugo G Espinosa, Jose Luis Maté-Muñoz, Maria Del Carmen Lozano-Estevan, Sara Cerrolaza-Tudanca, Manuel Rozalén-Bustín, Samuel Fernández-Carnero, Pablo García-Fernández

Abstract

Throughout history a variety of therapeutic tools have been studied as possible enhancers of sports activities. This study proposes the use of Capacitive-Resistive Electric Transfer (CRET) as a performance booster to paralympic athletes, specifically those belonging to the Spanish Paralympic swimming committee. The study was a randomized, single-blind, and observer-blind, crossover clinical trial. Six athletes were randomly assigned to three groups: one treated with CRET (A); a placebo group (B) and a control group (C). The CRET group attended a twenty-minute session before being subjected to pool trials at distances of 50 and 100 m at maximum performance. Measurements were in two dimensions: time in seconds and the Borg scale for perceived exertion. Comparisons between groups were made with respect to distance and the main variables. In the case of perceived exertion, no significant changes were observed in any of the distances; however, in the case of the time variable, a significant difference was observed between Group A vs. Personal Record at 100 m distance (76.3 ± 6.8 vs. 68.4 ± 3.3). The proposed protocol and level of hyperthermia applied suggest refusal of CRET use for the 100-m distance a few minutes before sports practice. Our analysis suggests the need to modify the presented protocol. ClinicalTrials.gov identifier under NCT number: NCT04336007.

Keywords: diathermy; paralympic athlete; performance; swimming; time trials.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cause-effect diagram (Ishikawa’s Thorn) of the theoretical effect of the application of CRET on sports performance, and the relationship between the effects of radiofrequency and factors that modify sports performance according to the literature. Source: Own elaboration.
Figure 2
Figure 2
Experimental design. Source: Own elaboration.
Figure 3
Figure 3
CONSORT flowchart. For each group, the number of participants who were randomized; received the intended treatment, and analyzed for the primary outcome. Source: Own elaboration.

References

    1. Kumaran B., Watson T. Thermal build-up, decay and retention responses to local therapeutic application of 448 kHz capacitive resistive monopolar radiofrequency: A prospective randomised crossover study in healthy adults. Int. J. Hyperth. 2015;31:883–895. doi: 10.3109/02656736.2015.1092172.
    1. Paolucci T., Pezzi L., Centra M., Porreca A., Barbato C., Bellomo R., Saggini R. Effects of capacitive and resistive electric transfer therapy in patients with painful shoulder impingement syndrome: A comparative study. J. Int. Med. Res. 2019;48:030006051988309. doi: 10.1177/0300060519883090.
    1. Coccetta C.A., Sale P., Ferrara P.E., Specchia A., Maccauro G., Ferriero G., Ronconi G. Effects of capacitive and resistive electric transfer therapy in patients with knee osteoarthritis: A randomized controlled trial. Int. J. Rehabil. Res. 2019;42:106–111. doi: 10.1097/MRR.0000000000000324.
    1. Osti R., Pari C., Salvatori G., Massari L. Tri-length laser therapy associated to tecar therapy in the treatment of low-back pain in adults: A preliminary report of a prospective case series. Lasers Med. Sci. 2014;30:407–412. doi: 10.1007/s10103-014-1684-3.
    1. Tashiro Y., Hasegawa S., Yokota Y., Nishiguchi S., Fukutani N., Shirooka H., Tasaka S., Matsushita T., Matsubara K., Nakayama Y., et al. Effect of Capacitive and Resistive electric transfer on haemoglobin saturation and tissue temperature. Int. J. Hyperth. 2017;33:696–702. doi: 10.1080/02656736.2017.1289252.
    1. Clijsen R., Leoni D., Schneebeli A., Cescon C., Soldini E., Li L., Barbero M. Does the Application of Tecar Therapy Affect Temperature and Perfusion of Skin and Muscle Microcirculation? A Pilot Feasibility Study on Healthy Subjects. J. Altern. Complement. Med. 2020;26:147–153. doi: 10.1089/acm.2019.0165.
    1. van der Veen P., Kempenaers F., Vermijlen S., Van Waeyenberghe C., Kerckhofs E., Bossuyt A., Van den Brande P., Lievens P. Electromagnetic diathermia: A lymphoscintigraphic and light reflection rheographic study of leg lymphatic and venous dynamics in healthy subjects. Lymphology. 2000;33:12–18.
    1. Yokota Y., Sonoda T., Tashiro Y., Suzuki Y., Kajiwara Y., Zeidan H., Nakayama Y., Kawagoe M., Shimoura K., Tatsumi M., et al. Effect of Capacitive and Resistive electric transfer on changes in muscle flexibility and lumbopelvic alignment after fatiguing exercise. J. Phys. Ther. Sci. 2018;30:719–725. doi: 10.1589/jpts.30.719.
    1. Vikmoen O., Raastad T., Seynnes O., Bergstrøm K., Ellefsen S., Rønnestad B.R. Effects of heavy strength training on running performance and determinants of running performance in female endurance athletes. PLoS ONE. 2016;11:e0150799. doi: 10.1371/journal.pone.0150799.
    1. Dankel S.J., Mattocks K.T., Mouser J.G., Buckner S.L., Jessee M.B., Loenneke J.P. A critical review of the current evidence examining whether resistance training improves time trial performance. J. Sports Sci. 2018;36:1485–1491. doi: 10.1080/02640414.2017.1398884.
    1. Bonne T.C., Lundby C., Jørgensen S., Johansen L., Mrgan M., Bech S.R., Sander M., Papoti M., Nordsborg N.B. “Live High-Train High” increases hemoglobin mass in Olympic swimmers. Eur. J. Appl. Physiol. 2014;114:1439–1449. doi: 10.1007/s00421-014-2863-4.
    1. Hellard P., Scordia C., Avalos M., Mujika I., Pyne D.B. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl. Physiol. Nutr. Metab. 2017;42:1106–1117. doi: 10.1139/apnm-2017-0180.
    1. Hopkins W.G., Hawley J.A., Burke L.M. Design and analysis of research on sport performance enhancement. Med. Sci. Sports Exerc. 1999;31:472–485. doi: 10.1097/00005768-199903000-00018.
    1. Hainline B., Turner J.A., Caneiro J.P., Stewart M., Lorimer Moseley G. Pain in elite athletes—Neurophysiological, biomechanical and psychosocial considerations: A narrative review. Br. J. Sports Med. 2017;51:1259–1264. doi: 10.1136/bjsports-2017-097890.
    1. Cecchi F., Pancani S., Vannetti F., Boni R., Castagnoli C., Paperini A., Pasquini G., Sofi F., Molino-Lova R., Macchi C., et al. Hemoglobin concentration is associated with self-reported disability and reduced physical performance in a community dwelling population of nonagenarians: The Mugello Study. Intern. Emerg. Med. 2017;12:1167–1173. doi: 10.1007/s11739-017-1762-1.
    1. McGowan C.J., Pyne D.B., Thompson K.G., Raglin J.S., Osborne M., Rattray B. Elite sprint swimming performance is enhanced by completion of additional warm-up activities. J. Sports Sci. 2017;35:1493–1499. doi: 10.1080/02640414.2016.1223329.
    1. Connick M.J., Beckman E., Spathis J., Deuble R., Tweedy S.M. How Much Do Range of Movement and Coordination Affect Paralympic Sprint Performance? Med. Sci. Sport. Exerc. 2015;47:2216–2223. doi: 10.1249/MSS.0000000000000643.
    1. Kilduff L.P., Finn C.V., Baker J.S., Cook C.J., West D.J. Preconditioning Strategies to Enhance Physical Performance on the Day of Competition. Int. J. Sport. Physiol. Perform. 2013;8:677–681. doi: 10.1123/ijspp.8.6.677.
    1. Ulrich S., Hasler E.D., Müller-Mottet S., Keusch S., Furian M., Latshang T.D., Schneider S., Saxer S., Bloch K.E. Mechanisms of Improved Exercise Performance under Hyperoxia. Respiration. 2017;93:90–98. doi: 10.1159/000453620.
    1. McGowan C.J., Thompson K.G., Pyne D.B., Raglin J.S., Rattray B. Heated jackets and dryland-based activation exercises used as additional warm-ups during transition enhance sprint swimming performance. J. Sci. Med. Sport. 2016;19:354–358. doi: 10.1016/j.jsams.2015.04.012.
    1. Neiva H.P., Marques M.C., Barbosa T.M., Izquierdo M., Marinho D.A. Warm-Up and Performance in Competitive Swimming. Sport. Med. 2014;44:319–330. doi: 10.1007/s40279-013-0117-y.
    1. Morriën F., Taylor M.J.D., Hettinga F.J. Biomechanics in paralympics: Implications for performance. Int. J. Sports Physiol. Perform. 2017;12:578–589. doi: 10.1123/ijspp.2016-0199.
    1. Burkett B., Payton C., Van de Vliet P., Jarvis H., Daly D., Mehrkuehler C., Kilian M., Hogarth L. Performance Characteristics of Para Swimmers How Effective Is the Swimming Classification System? Phys. Med. Rehabil. Clin. N. Am. 2018;29:333–346. doi: 10.1016/j.pmr.2018.01.011.
    1. Currell K., Jeukendrup A.E. Validity, reliability and sensitivity of measures of sporting performance. Sport. Med. 2008;38:297–316. doi: 10.2165/00007256-200838040-00003.
    1. Jeukendrup A., Saris W.H.M., Brouns F., Kester A.D.M. A new validated endurance performance test. Med. Sci. Sports Exerc. 1996;28:266–270. doi: 10.1097/00005768-199602000-00017.
    1. Simim M.A.M., De Mello M.T., Silva B.V.C., Rodrigues D.F., Rosa J.P.P., Couto B.P., Da Silva A. Load monitoring variables in training and competition situations: A systematic review applied to wheelchair sports. Adapt. Phys. Act. Q. 2017;34:466–483. doi: 10.1123/apaq.2016-0149.
    1. Borg G.A.V. Psychophysical bases of perceived exertion. Plast. Reconstr. Surg. 1954;14:377–381. doi: 10.1249/00005768-198205000-00012.
    1. Daly D.J., Djobova S.K., Malone L.A., Vanlandewijck Y., Steadward R.D. Swimming speed patterns and stroking variables in the paralympic100-m freestyle. Adapt. Phys. Act. Q. 2003;20:260–278. doi: 10.1123/apaq.20.3.260.
    1. Fulton S.K., Pyne D.B., Hopkins W.G., Burkett B. Training Characteristics of Paralympic Swimmers. J. Strength Cond. Res. 2010;24:471–478. doi: 10.1519/JSC.0b013e3181c09a9e.
    1. Dingley A., Pyne D.B., Burkett B. Phases of the swim-start in Paralympic swimmers are influenced by severity and type of disability. J. Appl. Biomech. 2014;30:643–648. doi: 10.1123/jab.2013-0321.
    1. Daly D.J., Malone L.A., Smith D.J., Vanlandewijck Y., Steadward R.D. The contribution of starting, turning, and finishing to total race performance in male Paralympic swimmers. Adapt. Phys. Act. Q. 2001;18:316–333. doi: 10.1123/apaq.18.3.316.
    1. Ranke M.B., Wit J.M. Growth hormone-past, present and future. Nat. Rev. Endocrinol. 2018;14:285–300. doi: 10.1038/nrendo.2018.22.
    1. Birzniece V., Nelson A.E., Ho K.K.Y. Growth hormone and physical performance. Trends Endocrinol. Metab. 2011;22:171–178. doi: 10.1016/j.tem.2011.02.005.
    1. Ali Z.A., Callaghan C.J., Lim E., Ali A.A., Nouraei S.A.R., Akthar A.M., Boyle J.R., Varty K., Kharbanda R.K., Dutka D.P., et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: A randomized controlled trial. Circulation. 2007;116((Suppl. S11)):1–98. doi: 10.1161/circulationaha.106.679167.
    1. Lalonde F., Curnier D.Y. Can Anaerobic Performance Be Improved by Remote Ischemic Preconditioning? J. Strength Cond. Res. 2015;29:80–85. doi: 10.1519/JSC.0000000000000609.
    1. De Sousa-De Sousa L., Tebar Sanchez C., Maté-Muñoz J.L., Hernández-Lougedo J., Barba M., Lozano-Esteban M.D.C., Garnacho-Castaño M.V., García-Fernández P. Application of Capacitive-Resistive Electric Transfer in Physiotherapeutic Clinical Practice and Sports. Int. J. Environ. Res. Public Health. 2021;18:12446. doi: 10.3390/ijerph182312446.
    1. Duñabeitia I., Arrieta H., Torres-Unda J., Gil J., Santos-Concejero J., Gil S.M., Irazusta J., Bidaurrazaga-Letona I. Effects of a capacitive-resistive electric transfer therapy on physiological and biomechanical parameters in recreational runners: A randomized controlled crossover trial. Phys. Ther. Sport. 2018;32:227–234. doi: 10.1016/j.ptsp.2018.05.020.
    1. Perret C. Elite-adapted wheelchair sports performance: A systematic review. Disabil. Rehabil. 2017;39:164–172. doi: 10.3109/09638288.2015.1095951.
    1. Moses L., Oakford R. Tables of Random Permutations. Stanford University Press; Redwood City, CA, USA: 1963.
    1. Feitosa W.G., Correia R.D.A., Barbosa T.M., Castro F.A.D.S. Performance of disabled swimmers in protocols or tests and competitions: A systematic review and meta-analysis. Sport. Biomech. 2019;21:255–277. doi: 10.1080/14763141.2019.1654535.
    1. Neiva H.P., Marques M.C., Barbosa T.M., Izquierdo M., Viana J.L., Marinho D.A. Effects of 10 min vs. 20 min passive rest after warm-up on 100 m freestyle time-trial performance: A randomized crossover study. J. Sci. Med. Sport. 2017;20:81–86. doi: 10.1016/j.jsams.2016.04.012.
    1. Costa G.D.C.T., Galvão L., Bottaro M., Mota J.F., Pimentel G.D., Gentil P. Effects of placebo on bench throw performance of Paralympic weightlifting athletes: A pilot study. J. Int. Soc. Sports Nutr. 2019;16:9. doi: 10.1186/s12970-019-0276-9.
    1. Moses L.E. Non-parametric statistics for psychological research. Psychol. Bull. 1952;49:122–143. doi: 10.1037/h0056813.
    1. Lix L.M., Keselman J.C., Keselman H.J. Consequences of Assumption Violations Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance F Test. Rev. Educ. Res. 2016;66:579–619. doi: 10.3102/00346543066004579.
    1. Cohen J. A power primer. Psychol. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155.
    1. de Ullibarri Galparsoro L., Pita Fernández S. Medidas de concordancia: El índice de Kappa [Concordance measures: The Kappa index] Cad Aten Primaria. 1999;6:169–171. (In Spanish)
    1. Dingley A.A., Pyne D.B., Youngson J., Burkett B. Effectiveness of a Dry-Land Resistance Training Program on Strength, Power, and Swimming Performance in Paralympic Swimmers. J. Strength Cond. Res. 2015;29:619–626. doi: 10.1519/JSC.0000000000000684.
    1. Brehm J.W., Self E.A. The intensity of motivation. Annu. Rev. Psychol. 1989;40:109–131. doi: 10.1146/annurev.ps.40.020189.000545.
    1. Corbett J., Barwood M.J., Ouzounoglou A., Thelwell R., Dicks M. Influence of Competition on Performance and Pacing during Cycling Exercise. Med. Sci. Sport. Exerc. 2012;44:509–515. doi: 10.1249/MSS.0b013e31823378b1.
    1. Williams E.L., Jones H.S., Sparks S.A., Marchant D.C., Midgley A.W., Mc Naughton L.R. Competitor presence reduces internal attentional focus and improves 16.1km cycling time trial performance. J. Sci. Med. Sport. 2015;18:486–491. doi: 10.1016/j.jsams.2014.07.003.
    1. Fousekis K., Chrysanthopoulos G., Tsekoura M., Mandalidis D., Mylonas K., Angelopoulos P., Koumoundourou D., Billis V., Tsepis E. Posterior thigh thermal skin adaptations to radiofrequency treatment at 448 kHz applied with or without Indiba® fascia treatment tools. J. Phys. Ther. Sci. 2020;32:292–296. doi: 10.1589/jpts.32.292.
    1. Wallace P.J., McKinlay B.J., Cheung S.S. Comment on: “Endurance Performance is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations”. Sport. Med. 2018;48:2671–2673. doi: 10.1007/s40279-018-0929-x.
    1. Stevens C.J., Mauger A.R., Hassmèn P., Taylor L. Endurance Performance is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations. Sport. Med. 2017;48:525–537. doi: 10.1007/s40279-017-0852-6.
    1. Ryan N.M., John M.H., Robert R. The effect of massage on acceleration and sprint performance in track & field athletes. Complement. Ther. Clin. Pract. 2018;30:1–5. doi: 10.1016/J.CTCP.2017.10.010.
    1. Stephenson B.T., Tolfrey K., Goosey-Tolfrey V.L. Mixed Active and Passive, Heart Rate-Controlled Heat Acclimation Is Effective for Paralympic and Able-Bodied Triathletes. Front. Physiol. 2019;10:1214. doi: 10.3389/fphys.2019.01214.
    1. Glazachev O.S., Kofler W., Dudnik E.N., Zapara M.A., Samartseva V.G. Effect of Adaptation to Passive Hyperthermia on Aerobic Performance and Cardio-Respiratory Endurance in Amateur Athletes. Hum. Physiol. 2020;46:66–73. doi: 10.1134/S0362119719060033.
    1. Zapara M.A., Dudnik E.N., Samartseva V.G., Kryzhanovskaya S.Y., Susta D., Glazachev O.S., Zapara M.A., Dudnik E.N., Samartseva V.G., Kryzhanovskaya S.Y., et al. Passive Whole-Body Hyperthermia Increases Aerobic Capacity and Cardio-Respiratory Efficiency in Amateur Athletes. Health. 2020;12:14–26. doi: 10.4236/health.2020.121002.
    1. West D.J., Dietzig B.M., Bracken R.M., Cunningham D.J., Crewther B.T., Cook C.J., Kilduff L.P. Influence of post-warm-up recovery time on swim performance in international swimmers. J. Sci. Med. Sport. 2013;16:172–176. doi: 10.1016/j.jsams.2012.06.002.
    1. Gray S.R., De Vito G., Nimmo M.A., Farina D., Ferguson R.A. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2006;290:R376–R382. doi: 10.1152/ajpregu.00291.2005.
    1. Corbett J., Neal R.A., Lunt H.C., Tipton M.J. Adaptation to Heat and Exercise Performance Under Cooler Conditions: A New Hot Topic. Sport. Med. 2014;44:1323–1331. doi: 10.1007/s40279-014-0212-8.
    1. Faulkner S., Hupperets M., Hodder S., Havenith G. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat. Scand. J. Med. Sci. Sports. 2015;25((Suppl. S1)):183–189. doi: 10.1111/sms.12373.
    1. Soultanakis H.N., Nafpaktiitou D., Mandaloufa S.M. Impact of cool and warm water immersion on 50-m sprint performance and lactate recovery in swimmers. J. Sports Med. Phys. Fitness. 2015;55:267–272.
    1. Ramos e Côrte A.C., Ramos Lopes G.H., Moraes M., de Oliveira R.M., Brioschi M.H., Hernandez A.J. The importance of thermography for injury prevention and performance improvement in olympic swimmers: A series of case study. Int. Phys. Med. Rehabil. J. 2018;3:137–141. doi: 10.15406/ipmrj.2018.03.00089.

Source: PubMed

3
Sottoscrivi