Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population

Ángela S García-Vega, Vanessa Corrales-Agudelo, Alejandro Reyes, Juan S Escobar, Ángela S García-Vega, Vanessa Corrales-Agudelo, Alejandro Reyes, Juan S Escobar

Abstract

Diet plays an important role in shaping gut microbiota. However, much remains to be learned regarding this association. We analyzed dietary intake and gut microbiota in a community-dwelling cohort of 441 Colombians. Diet quality, intake of food groups and nutrient consumption were paired with microbial diversity and composition using linear regressions, Procrustes analyses and a random-forest machine-learning algorithm. Analyses were adjusted for potential confounders, including the five cities from where the participants originated, sex (male, female), age group (18-40 and 41-62 years), BMI (lean, overweight, obese) and socioeconomic status. Microbial diversity was higher in individuals with increased intake of nutrients obtained from plant-food sources, whereas the intake of food groups and nutrients correlated with microbiota structure. Random-forest regressions identified microbial communities associated with different diet components. Two remarkable results confirmed previous expectations regarding the link between diet and microbiota: communities composed of short-chain fatty acid (SCFA) producers were more prevalent in the microbiota of individuals consuming diets rich in fiber and plant-food sources, such as fruits, vegetables and beans. In contrast, an inflammatory microbiota composed of bile-tolerant and putrefactive microorganisms along with opportunistic pathogens thrived in individuals consuming diets enriched in animal-food sources and of low quality, i.e., enriched in ultraprocessed foods and depleted in dietary fiber. This study expands our understanding of the relationship between dietary intake and gut microbiota. We provide evidence that diet is strongly associated with the gut microbial community and highlight generalizable connections between them.

Keywords: 16S rRNA; 24-h dietary recall; Colombians; community dwellers; food consumption; gut microbiome; short-chain fatty acids.

Conflict of interest statement

While engaged in this project, V.C.-A. and J.S.E. were employed by a research center that belongs to a food company (Grupo Empresarial Nutresa); A.S.G.-V. received economic stipend support from the same research center; A.R. had no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Diet features in the studied population. (A) Heatmap showing Pearson’s product moment correlations between pairs of food groups. Dendrograms obtained by hierarchical Ward-linkage clustering. (B,C) Principal component analysis (PCA) projecting the intake of food groups on the first three components. (D) Heatmap showing Pearson’s product moment correlations between pairs of nutrients. (E,F) PCA projecting the intake of nutrients on the first three components.
Figure 2
Figure 2
Gut microbiota diversity and composition of the studied population. (A) Distribution of alpha diversity (Shannon diversity index) by sex and age group. (B) Taxonomic profile at the class level. Classes with a median relative abundance equal to zero were combined into “Other”. The color code corresponds to the taxonomic classification at the phylum level.
Figure 3
Figure 3
Heatmap showing Spearman’s correlation coefficients between operational taxonomic unit (OTU) relative abundance and diet quality. The set of OTUs associated with multivariable-adjusted diet quality indexes were obtained with a regression-based random-forest machine-learning algorithm. Dendrograms obtained by hierarchical Ward-linkage clustering. The colored branches of the dendrogram are for illustrative purposes: brown branches highlight OTUs associated with diets of high quality, while purple branches highlight OTUs associated with diets of low quality. The taxonomic classification at the class level of each OTU is noted at the left side of the heatmap. Values in parentheses next to quality indexes indicate the number of OTUs selected by the random forest. HEI = adapted Healthy Eating Index 2015; GABA = Colombian Food-Based Dietary Guidelines.
Figure 4
Figure 4
Heatmap showing Spearman’s correlation coefficients between OTU relative abundance and food-group intake. The set of OTUs associated with multivariable-adjusted food-group intake was obtained with a regression-based random-forest machine-learning algorithm. We also included the first three components of the food-group PCA. Dendrograms obtained by hierarchical Ward-linkage clustering. The colored branches of the dendrogram are for illustrative purposes: brown branches highlight OTUs associated with plant-derived food groups, while purple branches highlight OTUs associated with animal-derived food groups. The taxonomic classification at the class level of each OTU is noted at the left side of the heatmap. Values in parentheses in the x-axis indicate the number of OTUs selected by the random forest.
Figure 5
Figure 5
Associations between nutrient intake and gut microbiota. (A) Correlation between the gut microbiota alpha diversity (Shannon diversity index) and nutrient intake (regression line with 95% confidence intervals). PC2 (x-axis) provides information about the sources of nutrients: negative values indicate nutrients obtained mainly from plant-food sources, whereas positive values are associated with nutrients obtained mainly from animal-food sources. (B) Heatmap showing Spearman’s correlation coefficients between OTU relative abundance and nutrient intake. The set of OTUs associated with multivariable-adjusted nutrient intake were obtained with a regression-based random-forest machine-learning algorithm. We also included the first three components of the nutrient PCA. Dendrograms obtained by hierarchical Ward-linkage clustering. The colored branches of the dendrogram are for illustrative purposes: brown branches highlight OTUs associated with nutrients mainly obtained from plant-food sources, purple branches highlight OTUs associated with nutrients mainly obtained from animal-food sources and blue branches highlight OTUs associated with PC3 (i.e., vitamins of the B complex). The taxonomic classification at the class level of each OTU is noted on the left side of the heatmap. Values in parentheses in the x-axis indicate the number of OTUs selected by the random forest.

References

    1. Thursby E., Juge N. Introduction to the human gut microbiota. Biochem. J. 2017;474:1823–1836. doi: 10.1042/BCJ20160510.
    1. Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J.H., Chinwalla A.T., Creasy H.H., Earl A.M., Fitzgerald M.G., Fulton R.S., et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234.
    1. Mancabelli L., Milani C., Lugli G.A., Turroni F., Ferrario C., van Sinderen D., Ventura M. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ. Microbiol. 2017;19:1379–1390. doi: 10.1111/1462-2920.13692.
    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. De la Cuesta-Zuluaga J., Kelley S.T., Chen Y., Escobar J.S., Mueller N.T., Ley R.E., McDonald D., Huang S., Swafford A.D., Knight R., et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. Msystems. 2019;4:1–12. doi: 10.1128/mSystems.00261-19.
    1. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–336. doi: 10.1038/nature10213.
    1. Albenberg L.G., Wu G.D. Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology. 2014;146:1564–1572. doi: 10.1053/j.gastro.2014.01.058.
    1. Annalisa N., Alessio T., Claudette T.D., Erald V., Antonino D.L., Nicola D.D. Gut microbioma population: An indicator really sensible to any change in age, diet, metabolic syndrome, and life-style. Mediat. Inflamm. 2014;2014:1–11. doi: 10.1155/2014/901308.
    1. Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R., et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–1651. doi: 10.1126/science.1155725.
    1. Muegge B.D., Kuczynski J., Knights D., Clemente J.C., González A., Fontana L., Henrissat B., Knight R., Gordon J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–974. doi: 10.1126/science.1198719.
    1. Gomez A., Petrzelkova K.J., Burns M.B., Yeoman C.J., Amato K.R., Vlckova K., Modry D., Todd A., Jost Robinson C.A., Remis M.J., et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns. Cell Rep. 2016;14:2142–2153. doi: 10.1016/j.celrep.2016.02.013.
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Schnorr S.L., Candela M., Rampelli S., Centanni M., Consolandi C., Basaglia G., Turroni S., Biagi E., Peano C., Severgnini M., et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 2014;5:1–12. doi: 10.1038/ncomms4654.
    1. Clemente J.C., Pehrsson E.C., Blaser M.J., Sandhu K., Gao Z., Wang B., Magris M., Hidalgo G., Contreras M., Noya-Alarcón Ó., et al. The microbiome of uncontacted Amerindians. Sci. Adv. 2015;1:e1500183. doi: 10.1126/sciadv.1500183.
    1. Obregon-Tito A.J., Tito R.Y., Metcalf J., Sankaranarayanan K., Clemente J.C., Ursell L.K., Zech Xu Z., Van Treuren W., Knight R., Gaffney P.M., et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 2015;6:1–9. doi: 10.1038/ncomms7505.
    1. Sonnenburg E.D., Smits S.A., Tikhonov M., Higginbottom S.K., Wingreen N.S., Sonnenburg J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–215. doi: 10.1038/nature16504.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. O’Keefe S.J.D., Li J.V., Lahti L., Ou J., Carbonero F., Mohammed K., Posma J.M., Kinross J., Wahl E., Ruder E., et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 2015;6:1–14. doi: 10.1038/ncomms7342.
    1. Liu Y., Ajami N.J., El-Serag H.B., Hair C., Graham D.Y., White D.L., Chen L., Wang Z., Plew S., Kramer J., et al. Dietary quality and the colonic mucosa-associated gut microbiome in humans. Am. J. Clin. Nutr. 2019;110:701–712. doi: 10.1093/ajcn/nqz139.
    1. Meslier V., Laiola M., Munch H., De Filippis F., Roume H., Quinquis B., Giacco R., Mennella I., Ferracane R., Pons N., et al. Gut microbiota Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69:1258–1268. doi: 10.1136/gutjnl-2019-320438.
    1. Claesson M.J., Cusack S., O’Sullivan O., Greene-Diniz R., De Weerd H., Flannery E., Marchesi J.R., Falush D., Dinan T., Fitzgerald G., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA. 2011;108:4586–4591. doi: 10.1073/pnas.1000097107.
    1. Profamilia. Instituto Nacional de Salud. Universidad de Antioquia. Organización Panamericana de la Salud. Instituto Colombiano de Bienestar Familiar (ICBF) Encuesta Nacional De La Situación Nutricional En Colombia (ENSIN) 2005. Instituto Colombiano de Bienestar Familiar; Bogotá D.C., Colombia: 2006.
    1. Manjarrés L.M., de Universidad A., Manjarrés S. Programa de Evaluación de Ingesta Dietética EVINDI v4. Universidad de Antioquia; Medellín, Colombia: 2008.
    1. Instituto Colombiano de Bienestar Familiar (ICBF) Tabla de Composición de Alimentos Colombianos. Reimpresión Año 2000. División de Recursos Materiales y Físicos ICBF; Bogotá D.C., Colombia: 2000.
    1. Quintero D., Escobar L. Tabla de Composición de Alimentos. Centro de atención Nutricional; Medellín, Colombia: 1996.
    1. Krebs-Smith S.M., Pannucci T.R.E., Subar A.F., Kirkpatrick S.I., Lerman J.L., Tooze J.A., Wilson M.M., Reedy J. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 2018;118:1591–1602. doi: 10.1016/j.jand.2018.05.021.
    1. Instituto Colombiano de Bienestar Familiar (ICBF) Documento técnico. Guías Alimentarias Basadas en Alimentos Para la Población Colombiana Mayor de 2 Años. ICBF; Bogotá D.C., Colombia: 2016.
    1. Monteiro C.A., Cannon G., Moubarac J.C., Levy R.B., Louzada M.L.C., Jaime P.C. The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21:5–17. doi: 10.1017/S1368980017000234.
    1. Iowa . Iowa State University Dietary Assessment Research Series Report 8. Iowa, Department of Statistics, PC-SIDE; Ames, IA, USA: 1996.
    1. De la Cuesta-Zuluaga J., Mueller N.T., Corrales-Agudelo V., Velásquez-Mejía E.P., Carmona J.A., Abad J.M., Escobar J.S. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40:54–62. doi: 10.2337/dc16-1324.
    1. Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K., Schloss P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl. Environ. Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13.
    1. DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05.
    1. Evans J., Sheneman L., Foster J. Relaxed neighbor joining: A fast distance-based phylogenetic tree construction method. J. Mol. Evol. 2006;62:785–792. doi: 10.1007/s00239-005-0176-2.
    1. Kindt R., Coe R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre (ICRAF); Nairobi, Kenya: 2005.
    1. Chen J., Bittinger K., Charlson E.S., Hoffmann C., Lewis J., Wu G.D., Collman R.G., Bushman F.D., Li H. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012;28:2106–2113. doi: 10.1093/bioinformatics/bts342.
    1. De la Cuesta-Zuluaga J., Corrales-Agudelo V., Velásquez-Mejía E.P., Carmona J.A., Abad J.M., Escobar J.S. Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. Sci. Rep. 2018;8:1–14. doi: 10.1038/s41598-018-29687-x.
    1. De la Cuesta-Zuluaga J., Corrales-Agudelo V., Carmona J.A., Abad J.M., Escobar J.S. Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. Int. J. Obes. 2018;42:424–432. doi: 10.1038/ijo.2017.281.
    1. Zackular J.P., Baxter N.T., Chen G.Y., Schloss P.D. Manipulation of the gut microbiota reveals role in colon tumorigenesis. Msphere. 2015;1 doi: 10.1128/mSphere.00001-15.
    1. Kovalskys I., Fisberg M., Gómez G., Pareja R.G., Yépez García M.C., Cortés Sanabria L.Y., Herrera-Cuenca M., Rigotti A., Guajardo V., Zalcman Zimberg I., et al. Energy intake and food sources of eight Latin American countries: Results from the Latin American Study of Nutrition and Health (ELANS) Public Health Nutr. 2018;21:2535–2547. doi: 10.1017/S1368980018001222.
    1. Ruiz Pardo Y.A. Caracterización de la Calidad Nutricional a Partir del Índice de Alimentación Saludable (HEI). Población de 18 a 59 Años 11 Meses. Estudio Latinoamericano de Nutrición y Salud Colombia ELANS-C, Pontificia Universidad Javeriana; Bogotá, Colombia: 2019.
    1. Agudelo Cañas S., Hernandez T.B.C. Recomendaciones de Ingesta de Energía y Nutrientes (RIEN) Para la Población Colombiana. Documento Técnico. Subdirección de Salud Nutricional Alimentos y Bebidas, Ministerio de Salud y Protección Social; Bogotá, Colombia: 2016.
    1. Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319.
    1. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., Almeida M., Quinquis B., Levenez F., Galleron N., et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.
    1. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105.
    1. Roediger W.E.W. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83:424–429. doi: 10.1016/S0016-5085(82)80339-9.
    1. Vital M., Karch A., Pieper D.H. Colonic butyrate-producing communities in humans: An overview using omics data. Msystems. 2017;2 doi: 10.1128/mSystems.00130-17.
    1. Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–671. doi: 10.1016/j.chom.2015.03.005.
    1. Vieira A.T., MacIa L., Galvão I., Martins F.S., Canesso M.C.C., Amaral F.A., Garcia C.C., Maslowski K.M., De Leon E., Shim D., et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol. 2015;67:1646–1656. doi: 10.1002/art.39107.
    1. Devkota S., Wang Y., Musch M.W., Leone V., Fehlner-Peach H., Nadimpalli A., Antonopoulos D.A., Jabri B., Chang E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012;487:104–108. doi: 10.1038/nature11225.
    1. Natividad J.M., Lamas B., Pham H.P., Michel M.L., Rainteau D., Bridonneau C., Da Costa G., Van Hylckama Vlieg J., Sovran B., Chamignon C., et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 2018;9:1–15. doi: 10.1038/s41467-018-05249-7.
    1. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Shin N.R., Whon T.W., Bae J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503. doi: 10.1016/j.tibtech.2015.06.011.
    1. Litvak Y., Byndloss M.X., Tsolis R.M., Bäumler A.J. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 2017;39:1–6. doi: 10.1016/j.mib.2017.07.003.
    1. Rivas L., Mellor G.E., Gobius K., Fegan N. Detection and Typing Strategies for Pathogenic Escherichia Coli. Springer; Berlin, Germany: 2015. Introduction to pathogenic Escherichia coli; pp. 1–38.
    1. Brennan C.A., Garrett W.S. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 2016;70:395–411. doi: 10.1146/annurev-micro-102215-095513.
    1. Zhang G., Weintraub A. Prevalence of enterotoxigenic Bacteroides fragilis in adult patients with diarrhea and healthy controls. Clin. Infect. Dis. 1999;29:590–594. doi: 10.1086/598639.
    1. Brook I. Anaerobic Infections. Diagnosis and Management. 1st ed. CRC Press; Boca Raton, FL, USA: 2007.
    1. Instituto Colombiano de Bienestar Familiar (ICBF) Ministerio de Salud. Instituto Nacional de Salud. Universidad Nacional de Colombia. Fundación Santa Fe de Bogotá . Encuesta Nacional de la Situación Nutricional de Colombia (ENSIN) 2015. Instituto Colombiano de Bienestar Familiar; Bogotá D.C., Colombia: 2015.
    1. Food and Agriculture Organization (FAO) Panorama de la Seguridad Alimentaria y Nutricional en América Latina y el Caribe 2017. Food and Agriculture Organization; Santiago, Chile: 2017.
    1. Food and Agriculture Organization (FAO) Panorama de la Seguridad Alimentaria y Nutricional en América Latina y el Caribe 2019: Hacia Entornos Alimentarios Más Saludables Que Hagan Frente a Todas Las Formas de Malnutrición. Food and Agriculture Organization; Santiago, Chile: 2019.
    1. Kovalskys I., Rigotti A., Koletzko B., Fisberg M., Gómez G., Herrera-Cuenca M., Cortés Sanabria L.Y., Yépez García M.C., Pareja R.G., Zimberg I.Z., et al. Latin American consumption of major food groups: Results from the ELANS study. PLoS ONE. 2019;14:e0225101. doi: 10.1371/journal.pone.0225101.
    1. Sonnenburg E.D., Sonnenburg J.L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 2019;17:383–390. doi: 10.1038/s41579-019-0191-8.
    1. Duvallet C., Gibbons S.M., Gurry T., Irizarry R.A., Alm E.J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 2017;8:1–10. doi: 10.1038/s41467-017-01973-8.
    1. World Health Organization (WHO) Global Status Report on Noncommunicable Diseases 2014. WHO Press; Geneva, Switzerland: 2014.
    1. Guzmán-Castañeda S.J., Ortega-Vega E.L., de la Cuesta-Zuluaga J., Velásquez-Mejía E.P., Rojas W., Bedoya G., Escobar J.S. Gut microbiota composition explains more variance in the host cardiometabolic risk than genetic ancestry. Gut Microbes. 2019;11:191–204. doi: 10.1080/19490976.2019.1634416.
    1. Escobar J.S., Klotz B., Valdes B.E., Agudelo G.M. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014;14:1–14. doi: 10.1186/s12866-014-0311-6.
    1. Carpenter C.L. Nutritional Oncology. 2nd ed. Academic Press; Boston, MA, USA: 2006. Dietary Assessment.
    1. Johnson A.J., Vangay P., Al-Ghalith G.A., Hillmann B.M., Ward T.L., Shields-Cutler R.R., Kim A.D., Shmagel A.K., Syed A.N., Walter J., et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25:789–802.e5. doi: 10.1016/j.chom.2019.05.005.
    1. Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M., et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–1094. doi: 10.1016/j.cell.2015.11.001.
    1. Korem T., Zeevi D., Zmora N., Weissbrod O., Bar N., Lotan-Pompan M., Avnit-Sagi T., Kosower N., Malka G., Rein M., et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 2017;25 doi: 10.1016/j.cmet.2017.05.002.
    1. Bashiardes S., Godneva A., Elinav E., Segal E. Towards utilization of the human genome and microbiome for personalized nutrition. Curr. Opin. Biotechnol. 2018;51:57–63. doi: 10.1016/j.copbio.2017.11.013.
    1. Zmora N., Suez J., Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019;16:35–56. doi: 10.1038/s41575-018-0061-2.
    1. Spector M.P. Metabolism, central (intermediary) Encycl. Microbiol. 2009:728–752. doi: 10.1016/b978-012373944-5.00078-x.
    1. Faust K., Sathirapongsasuti J.F., Izard J., Segata N., Gevers D., Raes J., Huttenhower C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 2012;8:e1002606. doi: 10.1371/journal.pcbi.1002606.
    1. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G., Gasbarrini A., Mele M. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014.

Source: PubMed

3
Sottoscrivi