Effects of RF-EMF on the Human Resting-State EEG-the Inconsistencies in the Consistency. Part 1: Non-Exposure-Related Limitations of Comparability Between Studies

Heidi Danker-Hopfe, Torsten Eggert, Hans Dorn, Cornelia Sauter, Heidi Danker-Hopfe, Torsten Eggert, Hans Dorn, Cornelia Sauter

Abstract

The results of studies on possible effects of radiofrequency electromagnetic fields (RF-EMFs) on human waking electroencephalography (EEG) have been quite heterogeneous. In the majority of studies, changes in the alpha-frequency range in subjects who were exposed to different signals of mobile phone-related EMF sources were observed, whereas other studies did not report any effects. In this review, possible reasons for these inconsistencies are presented and recommendations for future waking EEG studies are made. The physiological basis of underlying brain activity, and the technical requirements and framework conditions for conducting and analyzing the human resting-state EEG are discussed. Peer-reviewed articles on possible effects of EMF on waking EEG were evaluated with regard to non-exposure-related confounding factors. Recommendations derived from international guidelines on the analysis and reporting of findings are proposed to achieve comparability in future studies. In total, 22 peer-reviewed studies on possible RF-EMF effects on human resting-state EEG were analyzed. EEG power in the alpha frequency range was reported to be increased in 10, decreased in four, and not affected in eight studies. All reviewed studies differ in several ways in terms of the methodologies applied, which might contribute to different results and conclusions about the impact of EMF on human resting-state EEG. A discussion of various study protocols and different outcome parameters prevents a scientifically sound statement on the impact of RF-EMF on human brain activity in resting-state EEG. Further studies which apply comparable, standardized study protocols are recommended. Bioelectromagnetics. 2019;40:291-318. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.

Keywords: alpha band power; brain activity; electroencephalography; mobile phone; radiofrequency.

© 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Occipital dominance of alpha in resting‐state electroencephalography (EEG) with eyes closed. Figure shows a 30‐s epoch with six EEG signals (F4, F4, C4, C3, O1, and O2 referenced to the averaged mastoids), a bipolar vertical, horizontal electrooculogram (EOG), and an electrocardiogram (ECG).
Figure 2
Figure 2
Electrode positions and topographical assignment according to Jasper [1958].
Figure 3
Figure 3
Study selection flow chart. EEG = electroencephalography.
Figure 4
Figure 4
Graphical summary of the major findings observed in the 22 studies under consideration. (a) Number of studies by radiofrequency electromagnetic field (RF‐EMF) effect occurrence (yes/no) and direction of RF‐EMF effect. (b) Number of studies reporting an RF‐EMF effect by frequency band and direction of RF‐EMF effect in relation to the number of studies that investigated the respective frequency band. Studies: 1. Röschke and Mann [1997], 2. Hietanen et al. [2000], 3. Croft et al. [2002], 4. D'Costa et al. [2003], 5. Curcio et al. [2005], 6. Perentos et al. [2007], 7. Regel et al. [2007], 8. Croft et al. [2008], 9. Hinrikus et al. [2008a], 10. Hinrikus et al. [2008b], 11. Kleinlogel et al. [2008], 12. Croft et al. [2010], 13. Hinrikus et al. [2011], 14. Loughran et al. [2013], 15. Perentos et al. [2013], 16. Suhhova et al. [2013], 17. Trunk et al. [2013], 18. Ghosn et al. [2015], 19. Curcio et al. [2015], 20. Roggeveen et al. [2015], 21. Zentai et al. [2015], 22. Yang et al. [2017].
Figure 5
Figure 5
Information on age of the samples in the 22 reviewed studies. Information on age refers either to age ranges (grey‐shaded bars) or to mean values ± a measure of dispersion (black‐framed boxes). Please note that in some cases it was not further specified whether the standard deviation (SD) or standard error (SE) was reported as measure of dispersion. Dotted lines are used for a clear assignment of study subgroups. AG = age group; SG = subgroup; (a) mean ± SD, (b) mean ± SE, (c) not clear whether an SD or SE is reported, (d) weighted mean and standard deviation were computed based on separate information for men and women, (e) no age information was reported for the subgroups.
Figure 6
Figure 6
Size and sex distribution of the samples in the 22 reviewed studies. Dark grey bars display the number of males and light grey bars display the number of females. a)Maximum number of subjects considered for analyses was n = 109. AG = age group; SG = subgroup.
Figure 7
Figure 7
Resting‐state electroencephalography (EEG) with eyes closed (left) and eyes open (right). Figure shows a 30‐s epoch with 19 EEG signals referenced to the averaged mastoids, a bipolar vertical and horizontal electrooculogram (EOG), and an electrocardiogram (ECG). The blockade of alpha in the EEG by opening of the eyes is obvious.
Figure 8
Figure 8
Number and topographical distribution of EEG electrodes (including EEG analysis references) used in the 22 studies under consideration. Figure shows all 19 EEG electrode positions according to the 10–20‐system [Jasper, 1958] plus electrode positions Fpz and Oz (black dotted‐framed boxes) that do not belong to the standard electrode locations of the 10–20‐system. More than these 21 electrodes were considered in three of the 22 studies. Some studies did not clearly provide information on the reference used for analysis. This lack of information is either indicated by a “?” (not clear whether the specification refers to the recording or to the analysis reference) or by an “nI” (no information is provided about the analysis reference). C = Central; Com. av. = common average; CP = Centroparietal; EEG = electroencephalography; F = Frontal; P = Parietal; PF = Prefrontal; PO = Parieto‐Occipital; Post = Posterior; O = Occipital; L = Left; M = Midline; R = Right; T = Temporal. 1)Not further specified electrodes were grouped into front ipsilateral, front contralateral, posterior ipsilateral, and posterior contralateral scalp regions.
Figure 9
Figure 9
Examples of the impact of different references on the resting‐state electroencephalography (EEG). In the averaged mastoids montage, for most locations comparably high alpha amplitudes occur, with the lowest amplitudes for the temporal and frontal regions. With the Cz (single electrode) reference, the central and frontal regions show lower alpha amplitudes (the Cz location itself is zero in this diagram, of course.) A common average reference (mean of all scalp locations) leads to a generally weaker alpha rhythm.
Figure 10
Figure 10
Frequency bands used in the 22 studies under consideration. Dark grey‐shaded bars indicate the frequency bands, while the light grey‐shaded bars indicate the whole frequency range if no clear frequency band breakdown was reported. For comparison, the reference frequency band classifications according to Chang et al. [2011] and Jobert et al. [2012] are displayed at the bottom of the figure. The dotted lines mark the alpha frequency range used in pharmaco‐electroencephalography (EEG) studies.

References

    1. Anderer P, Saletu B, Pascual‐Marqui RD, Semlitsch HV. 2000. EEG and ERP topography and tomography in normal aging In: Saletu B, Krijzer F, Ferber G, Anderer P, editors, Electrophysiological Brain Research in Preclinical and Clinical Pharmacology and Related Fields ‐ An Update Wien, Austria: Facultas Universitätsverlag; pp 122–138.
    1. Baker FC, Colrain IM. 2010. Daytime sleepiness, psychomotor performance, waking EEG spectra and evoked potentials in women with severe premenstrual syndrome. J Sleep Res 19:214–227.
    1. Barry RJ, Rushby JA, Wallace MJ, Clarke AR, Johnstone SJ, Zlojutro I. 2005. Caffeine effects on resting‐state arousal. Clin Neurophysiol 116:2693–2700.
    1. Barry RJ, Clarke AR, Johnstone SJ. 2011. Caffeine and opening the eyes have additive effects on resting arousal measures. Clin Neurophysiol 122:2010–2015.
    1. Bauer G, Bauer R. 2011. EEG, drug effects, and central nervous system poisoning In: Schomer DL, Lopez da Silva FH, editors, Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Sixth Edition Phliadelphia, PA: Lippincott Williams and Wilkins; pp 901–922.
    1. Becker D, Creutzfeldt OD, Schwibbe M, Wuttke W. 1982. Changes in physiological, EEG and psychological parameters in women during the spontaneous menstrual cycle and following oral contraceptives. Psychoneuroendocrinology 7:75–90.
    1. Bodenmann S, Rusterholz T, Durr R, Stoll C, Bachmann V, Geissler E, Jaggi‐Schwarz K, Landolt HP. 2009. The functional Val158Met polymorphism of COMT predicts interindividual differences in brain alpha oscillations in young men. J Neurosci 29:10855–10862.
    1. Brenner RP, Ulrich RF, Reynolds CF, 3rd . 1995. EEG spectral findings in healthy, elderly men and women‐‐sex differences. Electroencephalogr Clin Neurophysiol 94:1–5.
    1. Brötzner CP, Klimesch W, Doppelmayr M, Zauner A, Kerschbaum HH. 2014. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives. Brain Res 1577:36–44.
    1. Chang BS, Schomer DL, Niedermayer E. 2011. Normal EEG and sleep: Adults and elderly In: Schomer DL, Lopez da Silva FH, editors, Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Sixth Edition Phliadelphia, PA: Lippincott Williams and Wilkins; pp 183–214.
    1. Chiang AK, Rennie CJ, Robinson PA, van Albada SJ, Kerr CC. 2011. Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol 122:1505–1517.
    1. Clarke AR, Barry RJ, McCarthy R, Selikowitz M. 2001. Age and sex effects in the EEG: Development of the normal child. Clin Neurophysiol 112:806–814.
    1. Creutzfeldt OD, Arnold PM, Becker D, Langenstein S, Tirsch W, Wilhelm H, Wuttke W. 1976. EEG changes during spontaneous and controlled menstrual cycles and their correlation with psychological performance. Electroencephalogr Clin Neurophysiol 40:113–131.
    1. Croft RJ, Barry RJ. 2000. Removal of ocular artifact from the EEG: A review. Neurophysiol Clin 30:5–19.
    1. Croft RJ, Chandler JS, Burgess AP, Barry RJ, Williams JD, Clarke AR. 2002. Acute mobile phone operation affects neural function in humans. Clin Neurophysiol 113:1623–1632.
    1. Croft RJ, Hamblin DL, Spong J, Wood AW, McKenzie RJ, Stough C. 2008. The effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram. Bioelectromagnetics 29:1–10.
    1. Croft RJ, Leung S, McKenzie RJ, Loughran SP, Iskra S, Hamblin DL, Cooper NR. 2010. Effects of 2G and 3G mobile phones on human alpha rhythms: Resting EEG in adolescents, young adults, and the elderly. Bioelectromagnetics 31:434–444.
    1. Curcio G, Ferrara M, Moroni F, D'Inzeo G, Bertini M, De Gennaro L. 2005. Is the brain influenced by a phone call? An EEG study of resting wakefulness. Neurosci Res 53:265–270.
    1. Curcio G, Mazzucchi E, Della Marca G, Vollono C, Rossini PM. 2015. Electromagnetic fields and EEG spiking rate in patients with focal epilepsy. Clin Neurophysiol 126:659–666.
    1. D'Costa H, Trueman G, Tang L, Abdel‐rahman U, Abdel‐rahman W, Ong K, Cosic I. 2003. Human brain wave activity during exposure to radiofrequency field emissions from mobile phones. Australas Phys Eng Sci Med 26:162–167.
    1. de Seze R, Ayoub J, Peray P, Miro L, Touitou Y. 1999. Evaluation in humans of the effects of radiocellular telephones on the circadian patterns of melatonin secretion, a chronobiological rhythm marker. J Pineal Res 27:237–242.
    1. Dimpfel W, Schober F, Spüler M. 1993. The influence of caffeine on human EEG under resting condition and during mental loads. Clin Investig 71:197.
    1. Dworetzky B, Herman S, Tatum WO. 2011. Artifacts of recording In: Schomer DL, Lopez da Silva FH, editors, Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Sixth Edition Phliadelphia, PA: Lippincott Williams and Wilkins; pp 239–266.
    1. Ehlers CL, Wall TL, Schuckit MA. 1989. EEG spectral characteristics following ethanol administration in young men. Electroencephalogr Clin Neurophysiol 73:179–187.
    1. European Commission . 2010. Eurobarometer 347 / Wave 73.3 ‐ TNS Opinion & Social, June 2010 [Internet]. Burxelles (BE): European Commission. Available from [Last accessed 20 September 2018].
    1. Ferber G, Abt K, Fichte K, Luthringer R. 1999. IPEG guideline on statistical design and analysis for pharmacodynamic trials. International Pharmaco‐EEG Group. Neuropsychobiology 39:92–100.
    1. Fink M. 2010. Remembering the lost neuroscience of pharmaco‐EEG. Acta Psychiatr Scand 121:161–173.
    1. Fisher DJ, Daniels R, Jaworska N, Knobelsdorf A, Knott VJ. 2012. Effects of acute nicotine administration on resting EEG in nonsmokers. Exp Clin Psychopharmacol 20:71–75.
    1. French CC, Beaumont JG. 1984. A critical review of EEG coherence studies of hemisphere function. Int J Psychophysiol 1:241–254.
    1. Garcés P, Vicente R, Wibral M, Pineda‐Pardo JA, Lopez ME, Aurtenetxe S, Marcos A, de Andres ME, Yus M, Sancho M, Maestú F, Fernandez A. 2013. Brain‐wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Front Aging Neurosci 5:1–7.
    1. Gasser T, Bächer P, Möcks J. 1982. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 53:119–124.
    1. Gehlen W, Spittler JF, Calabrese P. 1996. Biologisch‐zerebrale Effekte in niederfrequent gepulsten Hochfrequenzfeldern.Cerebro‐Biological Effects in Low‐Frequency Pulsed RF Fields. Edition Wissenschaft Forschungsgemeinschaft Funk 12:3–28.
    1. Ghosn R, Yahia‐Cherif L, Hugueville L, Ducorps A, Lemarechal JD, Thuroczy G, de Seze R, Selmaoui B. 2015. Radiofrequency signal affects alpha band in resting electroencephalogram. J Neurophysiol 113:2753–2759.
    1. Glantz SA. 2012. Primer of Biostatistics, Seventh Edition New York, NY: McGraw‐Hill Medical.
    1. Gmehlin D, Thomas C, Weisbrod M, Walther S, Pfuller U, Resch F, Oelkers‐Ax R. 2011. Individual analysis of EEG background‐activity within school age: Impact of age and sex within a longitudinal data set. Int J Dev Neurosci 29:163–170.
    1. Greenhouse SW, Geisser S. 1959. On methods in the analysis of profile data. Psychometrika 24:95–112.
    1. Groppe DM, Urbach TP, Kutas M. 2011. Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology 48:1711–1725.
    1. Harding GFA, Thompson CRS. 1976. EEG rhythms and the internal milieu In: Remond A, editor, Handbook of Electroencephalography and Clinical Neurophysiology, 6A:Amsterdam, Netherlands: Elsevier; pp 176–194.
    1. Hietanen M, Kovala T, Hamalainen AM. 2000. Human brain activity during exposure to radiofrequency fields emitted by cellular phones. Scand J Work Environ Health 26:87–92.
    1. Higuchi S, Liu Y, Yuasa T, Maeda A, Motohashi Y. 2001. Diurnal variations in alpha power density and subjective sleepiness while performing repeated vigilance tasks. Clin Neurophysiol 112:997–1000.
    1. Hinrichs H, Heinze HJ. 2006. High frequency GSM‐1800 fields with various modulations and field strengths: No short term effect on human awake EEG. Edition Wissenschaft Forschungsgemeinschaft Funk 23:4–11.
    1. Hinrikus H, Bachmann M, Lass J. 2011. Parametric mechanism of excitation of the electroencephalographic rhythms by modulated microwave radiation. Int J Radiat Biol 87:1077–1085.
    1. Hinrikus H, Bachmann M, Lass J, Karai D, Tuulik V. 2008a. Effect of low frequency modulated microwave exposure on human EEG: Individual sensitivity. Bioelectromagnetics 29:527–538.
    1. Hinrikus H, Bachmann M, Lass J, Tomson R, Tuulik V. 2008b. Effect of 7, 14 and 21 Hz modulated 450 MHz microwave radiation on human electroencephalographic rhythms. Int J Radiat Biol 84:69–79.
    1. Hochberg Y. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802.
    1. Holm S. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scand J Statist 6:65–70.
    1. Hountala CD, Maganioti AE, Papageorgiou CC, Nanou ED, Kyprianou MA, Tsiafakis VG, Rabavilas AD, Capsalis CN. 2008. The spectral power coherence of the EEG under different EMF conditions. Neurosci Lett 441:188–192.
    1. Huber R, Graf T, Cote KA, Wittmann L, Gallmann E, Matter D, Schuderer J, Kuster N, Borbely AA, Achermann P. 2000. Exposure to pulsed high‐frequency electromagnetic field during waking affects human sleep EEG. Neuroreport 11:3321–3325.
    1. Huynh H, Feldt LS. 1976. Estimation of the Box Correction for Degrees of Freedom from Sample Data in Randomized Block and Split‐Plot Designs. J Educ Stat 1:69–82.
    1. IARC . (2011). IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Press Relaese No 208 [Internet]. Lyon (FR): International Agency for Reasearch on Cancer. Available from: [Last updated 31 May 2011] [Last accessed 20 February 2019].
    1. ICNIRP . 1998. Guidelines for limiting exposure to time‐varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522.
    1. Jahre K, Matkey K, Meckelburg H‐J. 1996. Der Einfluß von gepulsten elektromagnetischen Feldern auf das Elektroenzephalogramm von Menschen. [The effect of pulsed electro‐magnetic fields on the electro‐encephalogram of humans]. Newsletter Edition Wissenschaft Forschungsgemeinschaft Funk 9:3–47.
    1. Jasper HH. 1958. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol 10:370–375.
    1. Jobert M, Wilson FJ. 2015. Advanced Analysis of Pharmaco‐EEG Data in Humans. Neuropsychobiology 72:165–177.
    1. Jobert M, Wilson FJ, Ruigt GS, Brunovsky M, Prichep LS, Drinkenburg WH, The IPEG Pharmaco‐EEG Guideline Committee . 2012. Guidelines for the recording and evaluation of pharmaco‐EEG data in man: The International Pharmaco‐EEG Society (IPEG). Neuropsychobiology 66:201–220.
    1. Johnson DE. 2010. Crossover experiments. WIREs Comp Stat 2:620–625.
    1. Kitchen CM. 2009. Nonparametric vs parametric tests of location in biomedical research. Am J Ophthalmol 147:571–572.
    1. Klass DW, Brenner RP. 1995. Electroencephalography of the elderly. J Clin Neurophysiol 12:116–131.
    1. Kleinlogel H, Dierks T, Koenig T, Lehmann H, Minder A, Berz R. 2008. Effects of weak mobile phone ‐ electromagnetic fields (GSM, UMTS) on well‐being and resting EEG. Bioelectromagnetics 29:479–487.
    1. Krafczyk S, Haberhauer PE, Bötzel K, Brix J 2002. Sind EMF ‐ Effekte auf das Ruhe‐EEG und evozierte Hirnpotentiale nachweisbar? [Are EMF effects on resting EEG and evoked brain potentials detectable?] In Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (ed): Beeinflussen elektromagnetische Felder von Mobiltelefonen zentralnervöse Informationsverarbeitungsleistungen des Menschen? [Do electromagnetic fields of mobile phones affect central nervous information processing in humans?]Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Dortmund, Berlin, Germany: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin pp 147‐162 (In German)
    1. Kramarenko AV, Tan U. 2003. Effects of high‐frequency electromagnetic fields on human EEG: A brain mapping study. Int J Neurosci 113:1007–1019.
    1. Kubicki ST, Höller L. 1980. Systematische Einteilung der EEG‐Grundrhythmen und ‐Normvarianten. EEG‐Labor 2:32–53.
    1. Lakens D. 2013. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t‐tests and ANOVAs. Front Psychol 4:1–12.
    1. Lafrance C, Dumont M. 2000. Diurnal variations in the waking EEG: Comparisons with sleep latencies and subjective alertness. J Sleep Res 9:243–248.
    1. Lebedeva NN, Sulimov AV, Sulimova OP, Kotrovskaya TI, Gailus T. 2000. Cellular phone electromagnetic field effects on bioelectric activity of human brain. Crit Rev Biomed Eng 28:323–337.
    1. Lenth RV. 2001. Some Practical Guidelines for Effective Sample Size Determination. Am Stat 55:187–193.
    1. Li G, Taljaard M, Van den Heuvel ER, Levine MA, Cook DJ, Wells GA, Devereaux PJ, Thabane L. 2017. An introduction to multiplicity issues in clinical trials: The what, why, when and how. Int J Epidemiol 46:746–755.
    1. Loughran SP, Benz DC, Schmid MR, Murbach M, Kuster N, Achermann P. 2013. No increased sensitivity in brain activity of adolescents exposed to mobile phone‐like emissions. Clin Neurophysiol 124:1303–1308.
    1. Loughran SP, Wood AW, Barton JM, Croft RJ, Thompson B, Stough C. 2005. The effect of electromagnetic fields emitted by mobile phones on human sleep. Neuroreport 16:1973–1976.
    1. Lv B, Chen Z, Wu T, Shao Q, Yan D, Ma L, Lu K, Xie Y. 2014. The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure. Clin Neurophysiol 125:277–286.
    1. Maby E, Le Bouquin Jeannes R, Faucon G. 2006. Short‐term effects of GSM mobiles phones on spectral components of the human electroencephalogram. Conf Proc IEEE Eng Med Biol Soc 1:3751–3754.
    1. Maris E. 2012. Statistical testing in electrophysiological studies. Psychophysiology 49:549–565.
    1. Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG‐ and MEG‐data. J Neurosci Methods 164:177–190.
    1. Markand ON. 1990. Alpha rhythms. J Clin Neurophysiol 7:163–189.
    1. Matsuura M, Yamamoto K, Fukuzawa H, Okubo Y, Uesugi H, Moriiwa M, Kojima T, Shimazono Y. 1985. Age development and sex differences of various EEG elements in healthy children and adults‐‐quantification by a computerized wave form recognition method. Electroencephalogr Clin Neurophysiol 60:394–406.
    1. Mensen A, Khatami R. 2013. Advanced EEG analysis using threshold‐free cluster‐enhancement and non‐parametric statistics. NeuroImage 67:111–118.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. 2010. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ 340:c869.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG, Consort . 2012. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. Int J Surg 10:28–55.
    1. Moher D, Schulz KF, Altman DG. 2001. The CONSORT statement: Revised recommendations for improving the quality of reports of parallel‐group randomised trials. Lancet 357:1191–1194.
    1. Morgan ML, Witte EA, Cook IA, Leuchter AF, Abrams M, Siegman B. 2005. Influence of age, gender, health status, and depression on quantitative EEG. Neuropsychobiology 52:71–76.
    1. Nanou E, Hountala C, Maganioti A, Papageorgiou C, Tsiafakis V, Rabavilas A, Capsalis C. 2009. Influence of a 1,800 MHz electromagnetic field on the EEG energy. Environmentalist 29:205–209.
    1. Nanou E, Tsiafakis V, Kapareliotis E, Papageorgiou C, Rabavilas A, Capsalis C. 2005. Influence of the Interaction of a 900 MHz Signal with Gender on EEG Energy: Experimental Study on the Influence of 900 MHz Radiation on EEG. Environmentalist 25:173–179.
    1. Nuwer MR. 1987. Recording electrode site nomenclature. J Clin Neurophysiol 4:121–133.
    1. Pandis N, Chung B, Scherer RW, Elbourne D, Altman DG. 2017. CONSORT 2010 statement: Extension checklist for reporting within person randomised trials. BMJ 357:j2835.
    1. Papageorgiou CC, Nanou ED, Tsiafakis VG, Capsalis CN, Rabavilas AD. 2004. Gender related differences on the EEG during a simulated mobile phone signal. Neuroreport 15:2557–2560.
    1. Papousek I, Schulter G. 1998. Different temporal stability and partial independence of EEG asymmetries from different locations: Implications for laterality research. Int J Neurosci 93:87–100.
    1. Perentos N, Croft RJ, McKenzie RJ, Cosic I. 2013. The alpha band of the resting electroencephalogram under pulsed and continuous radio frequency exposures. IEEE Trans Biomed Eng 60:1702–1710.
    1. Perentos N, Croft RJ, McKenzie RJ, Cvetkovic D, Cosic I. 2007. Comparison of the effects of continuous and pulsed mobile phone like RF exposure on the human EEG. Australas Phys Eng Sci Med 30:274–280.
    1. Petersen I, Eeg‐Olofsson O. 1971. The development of the electroencephalogram in normal children from the age of 1 through 15 years. Non‐paroxysmal activity. Neuropadiatrie 2:247–304.
    1. Qin Y, Xu P, Yao D. 2010. A comparative study of different references for EEG default mode network: The use of the infinity reference. Clin Neurophysiol 121:1981–1991.
    1. Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Rohrbaugh J, O'Connor S, Kuperman S, Reich T, Begleiter H. 2002. Beta power in the EEG of alcoholics. Biol Psychiatry 52:831–842.
    1. Rangaswamy M, Porjesz B, Chorlian DB, Choi K, Jones KA, Wang K, Rohrbaugh J, O'Connor S, Kuperman S, Reich T, Begleiter H. 2003. Theta power in the EEG of alcoholics. Alcohol Clin Exp Res 27:607–615.
    1. Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, Hairston WD, Hughes JD, Krystal A, Nichols AS. 2015. Traumatic brain injury detection using electrophysiological methods. Front Hum Neurosci 9:1–32.
    1. Rass O, Ahn WY, O'Donnell BF. 2015. Resting‐state EEG, impulsiveness, and personality in daily and nondaily smokers. Clin Neurophysiol 127:409–418.
    1. Regel SJ, Gottselig JM, Schuderer J, Tinguely G, Retey JV, Kuster N, Landolt HP, Achermann P. 2007. Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram. Neuroreport 18:803–807.
    1. Regen F, Dorn H, Danker‐Hopfe H. 2013. Association between pupillary unrest index and waking electroencephalogram activity in sleep‐deprived healthy adults. Sleep Med 14:902–912.
    1. Reiser H, Dimpfel W, Schober F. 1995. The influence of electromagnetic fields on human brain activity. Eur J Med Res 1:27–32.
    1. Roggeveen S, van Os J, Viechtbauer W, Lousberg R. 2015. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation. PLoS One 10:e0129496.
    1. Röschke J, Mann K. 1997. No short‐term effects of digital mobile radio telephone on the awake human electroencephalogram. Bioelectromagnetics 18:172–176.
    1. Rossini PM, Rossi S, Babiloni C, Polich J. 2007. Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. Prog Neurobiol 83:375–400.
    1. Sandsmark DK, Elliott JE, Lim MM. 2017. Sleep‐wake disturbances after traumatic brain injury: Synthesis of human and animal studies. Sleep 40:zsx044.
    1. SCENIHR . (2015). Opinion on Potential Health Effects of Exposure to Electromagnetic Fields (EMF) [Internet]. Luxembourg (L): Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR. Available from: [Last updated 20 January 2015].
    1. Schulz KF, Altman DG, Moher D, CONSORT Group . 2010. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med 8:1–9.
    1. Sigmon SC, Herning RI, Better W, Cadet JL, Griffiths RR. 2009. Caffeine withdrawal, acute effects, tolerance, and absence of net beneficial effects of chronic administration: Cerebral blood flow velocity, quantitative EEG, and subjective effects. Psychopharmacology (Berl) 204:573–585.
    1. Smit DJ, Posthuma D, Boomsma DI, Geus EJ. 2005. Heritability of background EEG across the power spectrum. Psychophysiology 42:691–697.
    1. Smitha CK, Narayanan NK 2013. Effect of mobile phone radiation on EEG. Proceedings –Third International Conference on Advances in Computing and Communications (ICACC), 29‐31 Aug 2013. Cochin, India: pp 111‐114.
    1. Smitha CK, Narayanan NK Analysis of fractal dimension of EEG signals under mobile phone radiation. IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 19‐21 Feb 2015. Kozhikode; India: pp 1‐5.
    1. Spittler JF, Calabrese P, Gehlen W. 1997. Einfluß elektromagnetischer Felder auf die menschliche Gehirntätigkeit. Medizintechnik 117:176–178.
    1. Stam CJ. 2011. Dementia and EEG In: Schomer DL, Lopes da Silva FH, editors, Niedermeyer's Electroencephalography: Basic Priciples, Clinical Applications, and Related Fields, Sixth Edition Philadelphia, PA: Lippincott Williams and Wilkins; pp 375–393.
    1. Stassen HH, Bomben G, Propping P. 1987. Genetic aspects of the EEG: An investigation into the within‐pair similarity of monozygotic and dizygotic twins with a new method of analysis. Electroencephalogr Clin Neurophysiol 66:489–501.
    1. Stöhr M, Riffel B, Pfadenhauer K. 1991. Neurophysiologische Untersuchungsmethoden in der Intensivmedizin Neurophysiological assessment methods in intensive‐care medicine Berlin, Heidelberg, Germany: Springer.
    1. Suhhova A, Bachmann M, Karai D, Lass J, Hinrikus H. 2013. Effect of microwave radiation on human EEG at two different levels of exposure. Bioelectromagnetics 34:264–274.
    1. Sullivan GM, Feinn R. 2012. Using effect size—or why the p value is not enough. J Grad Med Educ 4:279–282.
    1. Swedish Radiation Safety Authority . (2016). Recent Research on EMF and Health Risk ‐ Eleventh report from SSM's Scientific Council on Electromagnetic Fields, 2016, including thirteen yaers of electromagnetic field research monitored by SSM'S Scientific Council on EMF and health: How has the evidence changed over time? [Internet]. Stockholm (SE): SSM's Scientific Council on Electromagetic Fields. Available from: [Last updated April 2016].
    1. Swedish Radiation Safety Authority . (2018). Recent Research on EMF and Health Risk, Twelfth report from SSM's Scientific Council on Electromagnetic Fields, 2017. [Internet]. Stockholm (SE): SSM's Scientific Council on Electromagetic Fields. Available from: [Last updated April 2018].
    1. Tomarken AJ, Davidson RJ, Wheeler RE, Kinney L. 1992. Psychometric properties of resting anterior EEG asymmetry: Temporal stability and internal consistency. Psychophysiology 29:576–592.
    1. Trunk A, Stefanics G, Zentai N, Bacskay I, Felinger A, Thuroczy G, Hernadi I. 2014. Lack of interaction between concurrent caffeine and mobile phone exposure on visual target detection: An ERP study. Pharmacol Biochem Behav 124:412–420.
    1. Trunk A, Stefanics G, Zentai N, Bacskay I, Felinger A, Thuroczy G, Hernadi I. 2015. Effects of concurrent caffeine and mobile phone exposure on local target probability processing in the human brain. Sci Rep 5:1–12.
    1. Trunk A, Stefanics G, Zentai N, Kovacs‐Balint Z, Thuroczy G, Hernadi I. 2013. No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection. Bioelectromagnetics 34:31–42.
    1. Valberg PA, van Deventer TE, Repacholi MH. 2007. Workgroup report: Base stations and wireless networks‐radiofrequency (RF) exposures and health consequences. Environ Health Perspect 115:416–424.
    1. van Deventer E, van Rongen E, Saunders R. 2011. WHO research agenda for radiofrequency fields. Bioelectromagnetics 32:417–421.
    1. van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D, van Lutterveld R, van Dijk BW, van Straaten EC, Hillebrand A, Stam CJ. 2015. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin Neurophysiol 126:1468–1481.
    1. Vecchio F, Babiloni C, Ferreri F, Buffo P, Cibelli G, Curcio G, van Dijkman S, Melgari JM, Giambattistelli F, Rossini PM. 2010. Mobile phone emission modulates inter‐hemispheric functional coupling of EEG alpha rhythms in elderly compared to young subjects. Clin Neurophysiol 121:163–171.
    1. Vecchio F, Babiloni C, Ferreri F, Curcio G, Fini R, Del Percio C, Rossini PM. 2007. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms. Eur J Neurosci 25:1908–1913.
    1. Vecchio F, Buffo P, Sergio S, Iacoviello D, Rossini PM, Babiloni C. 2012a. Mobile phone emission modulates event‐related desynchronization of alpha rhythms and cognitive‐motor performance in healthy humans. Clin Neurophysiol 123:121–128.
    1. Vecchio F, Tombini M, Buffo P, Assenza G, Pellegrino G, Benvenga A, Babiloni C, Rossini PM. 2012b. Mobile phone emission increases inter‐hemispheric functional coupling of electroencephalographic alpha rhythms in epileptic patients. Int J Psychophysiol 84:164–171.
    1. von Klitzing L. 1995. Low‐frequency pulsed electromagnetic fields influence EEG of man. Physica Medica 11:77–80.
    1. Wada Y, Takizawa Y, Jiang ZY, Yamaguchi N. 1994. Gender differences in quantitative EEG at rest and during photic stimulation in normal young adults. Clin Electroencephalogr 25:81–85.
    1. WHO . (2010). WHO Research Agenda for Radiofrequency Fields. [Internet]. Geneva (CH): Word Health Organization (2010) Availbale from: [Last accessed 20 September 2018].
    1. Wieneke GH, Deinema CH, Spoelstra P, Storm van Leeuwen W, Versteeg H. 1980. Normative spectral data on alpha rhythm in male adults. Electroencephalogr Clin Neurophysiol 49:636–645.
    1. Yang L, Chen Q, Lv B, Wu T. 2017. Long‐Term Evolution Electromagnetic Fields Exposure Modulates the Resting State EEG on Alpha and Beta Bands. Clin EEG Neurosci 48:168–175.
    1. Zentai N, Csatho A, Trunk A, Fiocchi S, Parazzini M, Ravazzani P, Thuroczy G, Hernadi I. 2015. No Effects of Acute Exposure to Wi‐Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers. Radiat Res 184:568–577.

Source: PubMed

3
Sottoscrivi