Discriminating Value of Calprotectin in Disease Activity and Progression of Nonradiographic Axial Spondyloarthritis and Ankylosing Spondylitis

Jinxian Huang, Zhihua Yin, Guoxiang Song, Shengjin Cui, Jinzhao Jiang, Lijun Zhang, Jinxian Huang, Zhihua Yin, Guoxiang Song, Shengjin Cui, Jinzhao Jiang, Lijun Zhang

Abstract

It has been controversial whether ankylosing spondylitis (AS) and nonradiographic axial spondyloarthritis (nr-axSpA) are separate or different phases of radiographic progression. We determined that serum calprotectin level (ng/ml) was higher in AS (15.30 ± 6.49) and nr-axSpA (17.76 ± 8.59) patients than in healthy individuals (7.40 ± 2.67). No difference was observed in calprotectin level between these two groups. Elevated calprotectin was positively correlated with ESR, CRP, BASDAI, and ASDAS as well as SPARCC scoring and had no correlation with BASFI and mSASSS. No correlation was observed between calprotectin and Wnt/β-catenin pathway markers. Serum calprotectin can be used as a marker for inflammation in both nr-axSpA and AS, while it does not contribute to the discrimination of AS and nr-axSpA. Calprotectin-mediated inflammation was not correlated with principle effectors of Wnt/β-catenin pathway, indicating that inflammation and bone fusion might be separate processes of the disease.

Figures

Figure 1
Figure 1
Serum calprotectin level in the nr-axSpA group, AS group, and HC group. Serum calprotectin level (ng/ml) was significantly higher in the AS (14.16 ± 5.32) and nr-axSpA (17.76 ± 8.59) patients than that in the healthy individuals (7.40 ± 2.67) (p < 0.05). No difference was observed in calprotectin level between the AS and nr-axSpA patients (p > 0.05).
Figure 2
Figure 2
Correlation between serum calprotectin and laboratory results and clinical measurements. Correlation between serum calprotectin and ESR (r = 0.679, p = 1 × 10−6), CRP (r = 0.431, p = 2.06 × 10−6), BASDAI (r = 0.481, p = 1 × 10−6), BASFI (r = 0.154, p = 0.105), ASDAS (r = 0.378, p = 3.93 × 10−5), GSK-β (r = 0.034, p = 0.722), β-catenin (r = 0.118, p = 0.215), RUNX2 (r = 0.092, p = 0.336), SPARCC (r = 0.405, p = 9.21 × 10−6), and mSASSS (r = −0.033, p = 0.726) in patients with nr-axSpA and AS was shown.

References

    1. Rudwaleit M., van der Heijde D., Landewé R., et al. The assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Annals of the Rheumatic Diseases. 2011;70(1):25–31. doi: 10.1136/ard.2010.133645.
    1. Rudwaleit M., van der Heijde D., Landewe R., et al. The development of assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Annals of the Rheumatic Diseases. 2009;68(6):777–783. doi: 10.1136/ard.2009.108233.
    1. Corr M. Wnt signaling in ankylosing spondylitis. Clinical Rheumatology. 2014;33(6):759–762. doi: 10.1007/s10067-014-2663-6.
    1. Kwon S. R., Lim M. J., Suh C. H., et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatology International. 2012;32(8):2523–2527. doi: 10.1007/s00296-011-1981-0.
    1. Ustun N., Tok F., Kalyoncu U., et al. Sclerostin and Dkk-1 in patients with ankylosing spondylitis. Acta Reumatológica Portuguesa. 2014;39(2):146–151.
    1. Yucong Z., Lu L., Shengfa L., Yongliang Y., Ruguo S., Yikai L. Serum functional dickkopf-1 levels are inversely correlated with radiographic severity of ankylosing spondylitis. Clinical Laboratory. 2014;60(9):1527–1531.
    1. Daoussis D., Liossis S. N., Solomou E. E., et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis and Rheumatism. 2010;62(1):150–158. doi: 10.1002/art.27231.
    1. Hu Z., Xu M., Li Q., et al. Adalimumab significantly reduces inflammation and serum DKK-1 level but increases fatty deposition in lumbar spine in active ankylosing spondylitis. International Journal of Rheumatic Diseases. 2012;15(4):358–365. doi: 10.1111/j.1756-185X.2012.01734.x.
    1. Heiland G. R., Appel H., Poddubnyy D., et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Annals of the Rheumatic Diseases. 2012;71(4):572–574. doi: 10.1136/annrheumdis-2011-200216.
    1. Haynes K. R., Pettit A. R., Duan R., et al. Excessive bone formation in a mouse model of ankylosing spondylitis is associated with decreases in Wnt pathway inhibitors. Arthritis Research & Therapy. 2012;14(6):p. R253. doi: 10.1186/ar4096.
    1. Uderhardt S., Diarra D., Katzenbeisser J., et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Annals of the Rheumatic Diseases. 2010;69(3):592–597. doi: 10.1136/ard.2008.102046.
    1. Vogl T., Tenbrock K., Ludwig S., et al. MRP8 and MRP14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nature Medicine. 2007;13(9):1042–1049. doi: 10.1038/nm1638.
    1. van Lent P. L., Grevers L., Blom A. B., et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Annals of the Rheumatic Diseases. 2008;67(12):1750–1758. doi: 10.1136/ard.2007.077800.
    1. Viemann D., Strey A., Janning A., et al. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood. 2005;105(7):2955–2962. doi: 10.1182/blood-2004-07-2520.
    1. Vogl T., Ludwig S., Goebeler M., et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104(13):4260–4268. doi: 10.1182/blood-2004-02-0446.
    1. Oktayoglu P., Bozkurt M., Mete N., Caglayan M., Em S., Nas K. Elevated serum levels of calprotectin (myeloid-related protein 8/14) in patients with ankylosing spondylitis and its association with disease activity and quality of life. Journal of Investigative Medicine. 2014;62(6):880–884. doi: 10.1097/JIM.0000000000000095.
    1. Klingberg E., Carlsten H., Hilme E., Hedberg M., Forsblad-d'Elia H. Calprotectin in ankylosing spondylitis-frequently elevated in feces, but normal in serum. Scandinavian Journal of Gastroenterology. 2012;47(4):435–444. doi: 10.3109/00365521.2011.648953.
    1. Turina M. C., Sieper J., Yeremenko N., et al. Calprotectin serum level is an independent marker for radiographic spinal progression in axialspondyloarthritis. Annals of the Rheumatic Diseases. 2014;73(9):1746–1748. doi: 10.1136/annrheumdis-2014-205506.
    1. van der Linden S., Valkenburg H. A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis and Rheumatism. 1984;27(4):361–368. doi: 10.1002/art.1780270401.
    1. Maksymowych W. P., Inman R. D., Salonen D., et al. Spondyloarthritis Research Consortium of Canada magnetic resonance imaging index for assessment of sacroiliac joint inflammation in ankylosing spondylitis. Arthritis and Rheumatism. 2005;53(5):703–709. doi: 10.1002/art.21445.
    1. Creemers M. C., Franssen M. J., van't Hof M. A., Gribnau F. W., van de Putte L. B., van Riel P. L. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Annals of the Rheumatic Diseases. 2005;64(1):127–129. doi: 10.1136/ard.2004.020503.
    1. Poddubnyy D., Sieper J. Similarities and differences between nonradiographic and radiographic axial spondyloarthritis: a clinical, epidemiological and therapeutic assessment. Current Opinion in Rheumatology. 2014;26(4):377–383. doi: 10.1097/BOR.0000000000000071.
    1. Duan L., Wu R., Ye L., et al. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PloS One. 2013;8(4, article e62092) doi: 10.1371/journal.pone.0062605.
    1. van den Bosch M. H., Blom A. B., Schelbergen R. F., et al. Induction of canonical Wnt signaling by the alarmins S100A8/A9 in murine knee joints: implications for osteoarthritis. Arthritis & Rhematology. 2016;68(1):152–163. doi: 10.1002/art.39420.
    1. Wendling D., Verhoeven F., Prati C. Calprotectin and spondyloarthritis. Expert Review of Clinical Immunology. 2017;13(4):295–296. doi: 10.1080/1744666X.2017.1285700.
    1. Klingberg E., Strid H., Ståhl A., et al. A longitudinal study of fecal calprotectin and the development of inflammatory bowel disease in ankylosing spondylitis. Arthritis Research & Therapy. 2017;19(1):p. 21. doi: 10.1186/s13075-017-1223-2.
    1. Ehrchen J. M., Sunderkötter C., Foell D., Vogl T., Roth J. The endogenous toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. Journal of Leukocyte Biology. 2009;86(3):557–566. doi: 10.1189/jlb.1008647.

Source: PubMed

3
Sottoscrivi