A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention

Young D Kwon, Mangaiarkarasi Asokan, Jason Gorman, Baoshan Zhang, Qingbo Liu, Mark K Louder, Bob C Lin, Krisha McKee, Amarendra Pegu, Raffaello Verardi, Eun Sung Yang, Vrc Production Program, Kevin Carlton, Nicole A Doria-Rose, Paolo Lusso, John R Mascola, Peter D Kwong, Young D Kwon, Mangaiarkarasi Asokan, Jason Gorman, Baoshan Zhang, Qingbo Liu, Mark K Louder, Bob C Lin, Krisha McKee, Amarendra Pegu, Raffaello Verardi, Eun Sung Yang, Vrc Production Program, Kevin Carlton, Nicole A Doria-Rose, Paolo Lusso, John R Mascola, Peter D Kwong

Abstract

Passive transfer of broadly neutralizing antibodies is showing promise in the treatment and prevention of HIV-1. One class of antibodies, the VRC01 class, appears especially promising. To improve VRC01-class antibodies, we combined structure-based design with a matrix-based approach to generate VRC01-class variants that filled an interfacial cavity, used diverse third-complementarity-determining regions, reduced potential steric clashes, or exploited extended contacts to a neighboring protomer within the envelope trimer. On a 208-strain panel, variant VRC01.23LS neutralized 90% of the panel at a geometric mean IC80 less than 1 μg/ml, and in transgenic mice with human neonatal-Fc receptor, the serum half-life of VRC01.23LS was indistinguishable from that of the parent VRC01LS, which has a half-life of 71 d in humans. A cryo-electron microscopy structure of VRC01.23 Fab in complex with BG505 DS-SOSIP.664 Env trimer determined at 3.4-Å resolution confirmed the structural basis for its ~10-fold improved potency relative to VRC01. Another variant, VRC07-523-F54-LS.v3, neutralized 95% of the 208-isolated panel at a geometric mean IC80 of less than 1 μg/ml, with a half-life comparable to that of the parental VRC07-523LS. Our matrix-based structural approach thus enables the engineering of VRC01 variants for HIV-1 therapy and prevention with improved potency, breadth, and pharmacokinetics.

Keywords: Antibody VRC01; HIV-1 envelope trimer; broadly neutralizing antibody; matrix-based design; polyreactivity; prophylaxis; treatment.

Conflict of interest statement

No potential conflict of interest was reported by the author(s).

Figures

Figure 1.
Figure 1.
Structure-based approach focuses on recognition hotspots for VRC01-class antibodies. (a) Heavy-chain Gly54 to Trp mutation to mimic Phe43CD4 occupying a hydrophobic pocket on gp120. (b) Swap of VRC01 CDR H3 with VRC07 CDR H3 to increase binding surface between gp120 and the CDR H3. (c) Deletion of three residues of N-terminal light chain to better accommodate various lengths and conformations of the V5 region of gp120. (d) Replacement of framework region 3 with VRC03 framework region 3 (03FR3) to extend its interaction to the neighboring protomer. The structure of core gp120 in complex with VRC07-G54W (PDB ID: 4OLZ) is shown, superimposed on the structure of BG505 DS-SOSIP in complex with VRC01 Fab (PDB ID: 6NNF)
Figure 1.
Figure 1.
Structure-based approach focuses on recognition hotspots for VRC01-class antibodies. (a) Heavy-chain Gly54 to Trp mutation to mimic Phe43CD4 occupying a hydrophobic pocket on gp120. (b) Swap of VRC01 CDR H3 with VRC07 CDR H3 to increase binding surface between gp120 and the CDR H3. (c) Deletion of three residues of N-terminal light chain to better accommodate various lengths and conformations of the V5 region of gp120. (d) Replacement of framework region 3 with VRC03 framework region 3 (03FR3) to extend its interaction to the neighboring protomer. The structure of core gp120 in complex with VRC07-G54W (PDB ID: 4OLZ) is shown, superimposed on the structure of BG505 DS-SOSIP in complex with VRC01 Fab (PDB ID: 6NNF)
Figure 2.
Figure 2.
A matrix of structure-based designs identifies a variant, VRC01.23LS, with improved potency and low HEp-2 reactivity. (a) Four different VRC01LS heavy chain variants were paired with three different VRC01LS light chains to generate 12 VRC01LS variants. (b) Neutralization IC50 values of 12 VRC01LS variants assessed on 12 diverse strains of HIV-1. Variant VRC01.23LS neutralized 11 out of 12 viruses with median IC50 of 0.34 μg/ml. (c) HEp-2 cell staining assay against VRC01LS variants was performed at a concentration of 25 μg/ml along with control antibodies, VRC01LS, 4E10, VRC07-523LS, and VRC07-G54W. Control antibodies were assigned a score between 0 and 3. Antibodies scored greater than 1 at 25 µg/ml were considered polyreactive
Figure 2.
Figure 2.
A matrix of structure-based designs identifies a variant, VRC01.23LS, with improved potency and low HEp-2 reactivity. (a) Four different VRC01LS heavy chain variants were paired with three different VRC01LS light chains to generate 12 VRC01LS variants. (b) Neutralization IC50 values of 12 VRC01LS variants assessed on 12 diverse strains of HIV-1. Variant VRC01.23LS neutralized 11 out of 12 viruses with median IC50 of 0.34 μg/ml. (c) HEp-2 cell staining assay against VRC01LS variants was performed at a concentration of 25 μg/ml along with control antibodies, VRC01LS, 4E10, VRC07-523LS, and VRC07-G54W. Control antibodies were assigned a score between 0 and 3. Antibodies scored greater than 1 at 25 µg/ml were considered polyreactive
Figure 3.
Figure 3.
N49P7 and VRC07-523LS variants with improved potency and some HEp-2 reactivity. (a) Matrix of VRC01-class antibody variants. (b) Neutralization IC50 values of N49P7 variants and VRC07-523LS variants against a 12-virus panel. (c) HEp-2 cell staining assay against N49P7 and VRC07 variants was performed in the concentration of 25 μg/ml along with control antibodies, VRC01LS, 4E10, VRC07-523LS, and VRC07-G54W. Control antibodies were assigned a score between 0 and 3. Test antibodies scored greater than 1 at 25 µg/ml were considered polyreactive
Figure 3.
Figure 3.
N49P7 and VRC07-523LS variants with improved potency and some HEp-2 reactivity. (a) Matrix of VRC01-class antibody variants. (b) Neutralization IC50 values of N49P7 variants and VRC07-523LS variants against a 12-virus panel. (c) HEp-2 cell staining assay against N49P7 and VRC07 variants was performed in the concentration of 25 μg/ml along with control antibodies, VRC01LS, 4E10, VRC07-523LS, and VRC07-G54W. Control antibodies were assigned a score between 0 and 3. Test antibodies scored greater than 1 at 25 µg/ml were considered polyreactive
Figure 4.
Figure 4.
Truncation of disordered N-termini of VRC01-class light chains increased potency, while truncation of ordered light chains impaired potency. The N-termini of VRC01-class antibody light chains were shown in purple with 2fo-fc electron density maps in blue mesh contoured at 1 σ
Figure 4.
Figure 4.
Truncation of disordered N-termini of VRC01-class light chains increased potency, while truncation of ordered light chains impaired potency. The N-termini of VRC01-class antibody light chains were shown in purple with 2fo-fc electron density maps in blue mesh contoured at 1 σ
Figure 5.
Figure 5.
VRC01-class antibodies: neutralization potency and breadth against multiclade panel of viruses and serum half-life in human FcRn transgenic mice. (a) Summary of neutralization potency and breadth of VRC01-class antibodies against a panel of 208 pseudoviruses (b) Scattered plots of neutralization potency and breadth with black bars representing median IC50s. A horizontal dotted line extending from the median IC50 of VRC07-523-W54-LS.v3 was drawn as a reference for comparison. (c) Pharmacokinetics of VRC01-class antibodies in human FcRn transgenic mice. Error bars represent SD
Figure 5.
Figure 5.
VRC01-class antibodies: neutralization potency and breadth against multiclade panel of viruses and serum half-life in human FcRn transgenic mice. (a) Summary of neutralization potency and breadth of VRC01-class antibodies against a panel of 208 pseudoviruses (b) Scattered plots of neutralization potency and breadth with black bars representing median IC50s. A horizontal dotted line extending from the median IC50 of VRC07-523-W54-LS.v3 was drawn as a reference for comparison. (c) Pharmacokinetics of VRC01-class antibodies in human FcRn transgenic mice. Error bars represent SD
Figure 6.
Figure 6.
Cryo-EM structure of VRC01.23 Fab in complex with BG505 DS-SOSIP trimer at 3.4-Å resolution. (a) Heavy-chain Gly54 to Trp in its electron density map (b) The N-terminus of light chain VRC01.23LS starting at Leu4 in its electron density map. Cα-Cα distance of 9.5 Å between Leu4 and Thr461 in gp120 was shown in a dotted line. (c) The protruding loop region of the 03FR3 was shown in stick representation. (d) The hydrogen bonding networks between glycan at position 276 of gp120 and Arg66 of VRC01.23 light chain were shown in red dotted lines
Figure 6.
Figure 6.
Cryo-EM structure of VRC01.23 Fab in complex with BG505 DS-SOSIP trimer at 3.4-Å resolution. (a) Heavy-chain Gly54 to Trp in its electron density map (b) The N-terminus of light chain VRC01.23LS starting at Leu4 in its electron density map. Cα-Cα distance of 9.5 Å between Leu4 and Thr461 in gp120 was shown in a dotted line. (c) The protruding loop region of the 03FR3 was shown in stick representation. (d) The hydrogen bonding networks between glycan at position 276 of gp120 and Arg66 of VRC01.23 light chain were shown in red dotted lines

References

    1. Sok D, Burton DR.. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol. 2018;19:1179–12. doi:10.1038/s41590-018-0235-7.
    1. Pegu A, Hessell AJ, Mascola JR, Haigwood NL. Use of broadly neutralizing antibodies for HIV-1 prevention. Immunol Rev. 2017;275(1):296–312. doi:10.1111/imr.12511.
    1. Julg B, Barouch DH. Neutralizing antibodies for HIV-1 prevention. Curr Opin HIV AIDS. 2019;14(4):318–24. doi:10.1097/COH.0000000000000556.
    1. Gruell H, Klein F. Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology. 2018;15:73. doi:10.1186/s12977-018-0455-9.
    1. Jaworski JP, Cahn P. Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV. 2018;5(12):e723–e31. doi:10.1016/S2352-3018(18)30174-7.
    1. Walker LM, Phogat SK, Chan-Hui P-Y, WagneR D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science. 2009;326(5950):285–89. doi:10.1126/science.1178746.
    1. Doria-Rose NA, Bhiman JN, Roark RS, Schramm CA, Gorman J, Chuang G-Y, Pancera M, Cale EM, Ernandes MJ, Louder MK, et al. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J Virol. 2017;2:76–91. doi:10.1126/sciimmunol.aal2200.
    1. Sok D, Pauthner M, Briney B, Lee JH, Saye-Francisco KL, Hsueh J, Ramos A, Le KM, Jones M, Jardine JG, et al. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity. 2016;45(1):31–45. doi:10.1016/j.immuni.2016.06.026.
    1. Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, et al. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med. 2017;9(373):9. doi:10.1126/scitranslmed.aal2144.
    1. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 2011;477:466–70. doi:10.1038/nature10373.
    1. Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, Halper-Stromberg A, Gnanapragasam PN, Spencer DI, Seaman MS, et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A. 2012;109:E3268–77. doi:10.1073/pnas.1217207109.
    1. Huang J, Kang BH, Ishida E, Zhou T, Griesman T, Sheng Z, Wu F, Doria-Rose NA, Zhang B, McKee K, et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity. 2016;45:1108–21. doi:10.1016/j.immuni.2016.10.027.
    1. Sajadi MM, Dashti A, Rikhtegaran Tehrani Z, Tolbert WD, Seaman MS, Ouyang X, Gohain N, Pazgier M, Kim D, Cavet G, et al. Identification of near-pan-neutralizing antibodies against HIV-1 by deconvolution of plasma humoral responses. Cell. 2018;173:1783–95 e14. doi:10.1016/j.cell.2018.03.061.
    1. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, Pietzsch J, Fenyo D, Abadir A, Velinzon K, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011;333:1633–37. doi:10.1126/science.1207227.
    1. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, Zhou T, Schmidt SD, Wu L, Xu L, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329:856–61. doi:10.1126/science.1187659.
    1. Schommers P, Gruell H, Abernathy ME, Tran MK, Dingens AS, Gristick HB, Barnes CO, Schoofs T, Schlotz M, Vanshylla K, et al. Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell. 2020;180:471–89 e22. doi:10.1016/j.cell.2020.01.010.
    1. Buchacher A, Predl R, Strutzenberger K, Steinfellner W, Trkola A, Purtscher M, Gruber G, Tauer C, Steindl F, Jungbauer A, et al. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res Hum Retroviruses. 1994;10:359–69. doi:10.1089/aid.1994.10.359.
    1. Williams LD, Ofek G, Schatzle S, McDaniel JR, Lu X, Nicely NI, Wu L, Lougheed CS, Bradley T, Louder MK, et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci Immunol. 2017;2(7):2. doi:10.1126/sciimmunol.aal2200.
    1. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, Imamichi H, Bailer RT, Chakrabarti B, Sharma SK, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 2012;491:406–12. doi:10.1038/nature11544.
    1. Krebs SJ, Kwon YD, Schramm CA, Law WH, Donofrio G, Zhou KH, Gift S, Dussupt V, Georgiev IS, Schatzle S, et al. Longitudinal analysis reveals early development of three MPER-directed neutralizing antibody lineages from an HIV-1-infected individual. Immunity. 2019;50:677–91 e13. doi:10.1016/j.immuni.2019.02.008.
    1. Kong R, Xu K, Zhou T, Acharya P, Lemmin T, Liu K, Ozorowski G, Soto C, Taft JD, Bailer RT, et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science. 2016;352(6287):828–33. doi:10.1126/science.aae0474.
    1. Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, Ramirez A, Derking R, van Gils MJ, Liang C-H, et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity. 2014;40(5):657–68. doi:10.1016/j.immuni.2014.04.009.
    1. Huang J, Kang BH, Pancera M, Lee JH, Tong T, Feng Y, Imamichi H, Georgiev IS, Chuang G-Y, Druz A, et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature. 2014;515(7525):138–42. doi:10.1038/nature13601.
    1. Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP Jr., Bach F, Lee YE, Nogueira L, et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity. 2019;50(6):1513–29 e9. doi:10.1016/j.immuni.2019.04.014.
    1. Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM, Bleeker WK, Parren PW, Marx PA, Burton DR. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat Med. 2009;15(8):951–54. doi:10.1038/nm.1974.
    1. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, Koff WC, Watkins DI, Burton DR, Farzan M. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 2009;5(5):e1000433. doi:10.1371/journal.ppat.1000433.
    1. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, Beary H, Hayes D, Frankel SS, Birx DL, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med. 2000;6(2):207–10. doi:10.1038/72318.
    1. Shingai M, Donau OK, Plishka RJ, Buckler-White A, Mascola JR, Nabel GJ, Nason MC, Montefiori D, Moldt B, Poignard P, et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J Exp Med. 2014;211(10):2061–74. doi:10.1084/jem.20132494.
    1. Pegu A, Yang Z-Y, Boyington JC, Wu L, Ko S-Y, Schmidt SD, McKee K, Kong W-P, Shi W, Chen X, et al. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci Transl Med. 2014;6(243):243ra88. doi:10.1126/scitranslmed.3008992.
    1. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, Ayehunie S, Cavacini LA, Posner MR, Katinger H, Stiegler G, et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian–human immunodeficiency virus infection. Nat Med. 2000;6(2):200–06. doi:10.1038/72309.
    1. Moldt B, Rakasz EG, Schultz N, Chan-Hui P-Y, Swiderek K, Weisgrau KL, Piaskowski SM, Bergman Z, Watkins DI, Poignard P, et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A. 2012;109(46):18921–25. doi:10.1073/pnas.1214785109.
    1. Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, Lehmann C, Suarez I, Oliveira TY, Lorenzi JCC, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature. 2018;561:479–84. doi:10.1038/s41586-018-0531-2.
    1. Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr., Buckley N, Kremer G, Nogueira L, Braunschweig M, Scheid JF, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015;522:487–91. doi:10.1038/nature14411.
    1. Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, Enama ME, Plummer S, Holman L, Hendel CS, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med. 2015;7:319ra206. doi:10.1126/scitranslmed.aad5752.
    1. Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, Murrell B, Pfeifer N, Nogueira L, Oliveira TY, et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med. 2017;23:185–91. doi:10.1038/nm.4268.
    1. Corey L, Gilbert PB, Juraska M, Montefiori DC, Morris L, Karuna ST, Edupuganti S, Mgodi NM, deCamp AC, Rudnicki E, et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N Engl J Med. 2021;384:1003–14. doi:10.1056/NEJMoa2031738.
    1. Diskin R, Scheid JF, Marcovecchio PM, West AP Jr., Klein F, Gao H, Gnanapragasam PN, Abadir A, Seaman MS, Nussenzweig MC, et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science. 2011;334:1289–93. doi:10.1126/science.1213782.
    1. Rudicell RS, Kwon YD, Ko SY, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol. 2014;88:12669–82. doi:10.1128/JVI.02213-14.
    1. Liu Q, Lai YT, Zhang P, Louder MK, Pegu A, Rawi R, Asokan M, Chen X, Shen CH, Chuang GY, et al. Improvement of antibody functionality by structure-guided paratope engraftment. Nat Commun. 2019;10:721. doi:10.1038/s41467-019-08658-4.
    1. Kwon YD, Chuang GY, Zhang B, Bailer RT, Doria-Rose NA, Gindin TS, Lin B, Louder MK, McKee K, O’Dell S, et al. Surface-matrix screening identifies semi-specific interactions that improve potency of a near pan-reactive HIV-1-neutralizing antibody. Cell Rep. 2018;22:1798–809. doi:10.1016/j.celrep.2018.01.023.
    1. Cherf GM, Cochran JR. Applications of yeast surface display for protein engineering. Methods Mol Biol. 2015;1319:155–75. doi:10.1007/978-1-4939-2748-7_8.
    1. Gaudinski MR, Houser KV, Doria-Rose NA, Chen GL, Rothwell RSS, Berkowitz N, Costner P, Holman LA, Gordon IJ, Hendel CS, et al. Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV. 2019;6:e667–e79. doi:10.1016/S2352-3018(19)30181-X.
    1. Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, DeZure A, Lynch RM, Gordon I, Plummer S, et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol. 2015;182:289–301. doi:10.1111/cei.12692.
    1. Bar-On Y, Gruell H, Schoofs T, Pai JA, Nogueira L, Butler AL, Millard K, Lehmann C, Suarez I, Oliveira TY, et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med. 2018;24:1701–07. doi:10.1038/s41591-018-0186-4.
    1. Cohen YZ, Lorenzi JCC, Krassnig L, Barton JP, Burke L, Pai J, Lu C-L, Mendoza P, Oliveira TY, Sleckman C, et al. Relationship between latent and rebound viruses in a clinical trial of anti–HIV-1 antibody 3BNC117. J Exp Med. 2011;334(9):2311–24. doi:10.1126/science.1213782.
    1. Mayer KH, Seaton KE, Huang Y, Grunenberg N, Isaacs A, Allen M, Ledgerwood JE, Frank I, Sobieszczyk ME, Baden LR, et al. Safety, pharmacokinetics, and immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV monoclonal antibody, VRC01, administered to HIV-uninfected adults: results of a phase 1 randomized trial. PLoS Med. 2015;182(11):e1002435. doi:10.1111/cei.12692.
    1. Gaudinski MR, Coates EE, Houser KV, Chen GL, Yamshchikov G, Saunders JG, Holman LA, Gordon I, Plummer S, Hendel CS, et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a Phase 1 open-label clinical trial in healthy adults. PLoS Med. 2011;333(1):e1002493. doi:10.1126/science.1207227.
    1. Ko S-Y, Pegu A, Rudicell RS, Yang Z-Y, Joyce MG, Chen X, Wang K, Bao S, Kraemer TD, Rath T, et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature. 2014;514(7524):642–45. doi:10.1038/nature13612.
    1. Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2011;333(2):1633–37. doi:10.1126/science.1207227.
    1. Doria-Rose NA, Louder MK, Yang Z, O’Dell S, Nason M, Schmidt SD, McKee K, Seaman MS, Bailer RT, Mascola JRHIV-1. HIV-1 neutralization coverage is improved by combining monoclonal antibodies that target independent epitopes. J Virol. 2018;24(6):1701–07. doi:10.1038/s41591-018-0186-4.
    1. Wu X, Zhang Z, Schramm CA, Joyce MG, Kwon YD, Zhou T, Sheng Z, Zhang B, O’Dell S, McKee K, et al. Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell. 2015;161(3):470–85. doi:10.1016/j.cell.2015.03.004.
    1. Warszawski S, Borenstein Katz A, Lipsh R, Khmelnitsky L, Ben Nissan G, Javitt G, Dym O, Unger T, Knop O, Albeck S, et al. Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. PLoS Comput Biol. 2019;15(8):e1007207. doi:10.1371/journal.pcbi.1007207.
    1. Kwon YD, Pancera M, Acharya P, Georgiev IS, Crooks ET, Gorman J, Joyce MG, Guttman M, Ma X, Narpala S, et al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol. 2015;22(7):522–31. doi:10.1038/nsmb.3051.
    1. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393(6686):648–59. doi:10.1038/31405.
    1. Stewart-Jones GB, Soto C, Lemmin T, Chuang GY, Druz A, Kong R, Thomas PV, Wagh K, Zhou T, Behrens AJ, et al. Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G. Cell. 2016;165:813–26. doi:10.1016/j.cell.2016.04.010.
    1. Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin CL, Bilska M, Greene KM, Gao H, Todd CA, Ozaki DA, Seaman MS, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods. 2014;409:131–46. doi:10.1016/j.jim.2013.11.022.
    1. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B. Automated molecular microscopy: the new Leginon system. J Struct Biol. 2005;151(1):41–60. doi:10.1016/j.jsb.2005.03.010.
    1. Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, Pulokas J, Yoshioka C, Irving C, Mulder A, Lau P-W, et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol. 2009;166(1):95–102. doi:10.1016/j.jsb.2009.01.002.
    1. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J Struct Biol. 2009;166(2):205–13. doi:10.1016/j.jsb.2009.01.004.
    1. Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017;14(4):331–32. doi:10.1038/nmeth.4193.
    1. Zhang ZK. Gctf: real-time CTF determination and correction. J Struct Biol. 2016;193(1):1–12. doi:10.1016/j.jsb.2015.11.003.
    1. Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2018;215(2):216–21. doi:10.1084/jem.20180936.
    1. Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2018;561(3):519–30. doi:10.1038/s41586-018-0531-2.
    1. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14(3):290–96. doi:10.1038/nmeth.4169.
    1. Adams PD, Gopal K, Grosse-Kunstleve RW, Hung L-W, Ioerger TR, McCoy AJ, Moriarty NW, Pai RK, Read RJ, Romo TD, et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J Synchrotron Radiat. 2016;165(1):813–26. doi:10.1016/j.cell.2016.04.010.
    1. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(12):2126–32. doi:10.1107/S0907444904019158.
    1. Davis IW, Murray LW, Richardson JS, Richardson DC. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 2004;32(Web Server):W615–9. doi:10.1093/nar/gkh398.
    1. Barad BA, Echols N, Wang RY, Cheng Y, DiMaio F, Adams PD, Fraser JS. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy. Nat Methods. 2020;180(10):471–489.e22. doi:10.1016/j.cell.2020.01.010.

Source: PubMed

3
Sottoscrivi