How can the microbiologist help in diagnosing neonatal sepsis?

Michela Paolucci, Maria Paola Landini, Vittorio Sambri, Michela Paolucci, Maria Paola Landini, Vittorio Sambri

Abstract

Neonatal sepsis can be classified into two subtypes depending upon whether the onset of symptoms is before 72 hours of life (early-onset neonatal sepsis-EONS) or later (late-onset neonatal sepsis-LONS). These definitions have contributed greatly to diagnosis and treatment by identifying which microorganisms are likely to be responsible for sepsis during these periods and the expected outcomes of infection. This paper focuses on the tools that microbiologist can offer to diagnose and eventually prevent neonatal sepsis. Here, we discuss the advantages and limitation of the blood culture, the actual gold standard for sepsis diagnosis. In addition, we examine the utility of molecular techniques in the diagnosis and management of neonatal sepsis.

References

    1. Singh M. Perinatal infections. In: Singh M, editor. Care of the Newborn. 5th edition. New Delhi, India: 1999. pp. 198–221.
    1. Chacko B, Sohi I. Early onset neonatal sepsis. Indian Journal of Pediatrics. 2005;72(1):23–26.
    1. Klinger G, Levy I, Sirota L, Boyko V, Reichman B, Lerner-Geva L. Epidemiology and risk factors for early onset sepsis among very-low-birthweight infants. American Journal of Obstetrics and Gynecology. 2009;201(1):38.e1–38.e6.
    1. Jean-Baptiste N, Benjamin DK, Jr., Cohen-Wolkowiez M, et al. Coagulase-negative staphylococcal infections in the neonatal intensive care unit. Infection Control and Hospital Epidemiology. 2011;32(7):679–686.
    1. Regan JA, Klebanoff MA, Nugent RP, et al. Colonization with group B streptococci in pregnancy and adverse outcome. American Journal of Obstetrics and Gynecology. 1996;174(4):1354–1360.
    1. CDC. Trends in perinatal group B streptococcal disease—United States, 2000–2006. Morbidity and Mortality Weekly Report. 2009;58(5):109–112.
    1. Phares CR, Lynfield R, Farley MM, et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. Journal of the American Medical Association. 2008;299(17):2056–2065.
    1. Nizet V, Ferrieri P, Rubens CE. Molecular pathogenesis of group B streptococcal disease in newborns. In: Stevens D, editor. Streptococcal Infections: Clinical Aspects, Microbiology, and Molecular Pathogenesis. New York, NY, USA: Oxford University Press; 2000. pp. 180–221.
    1. Boyer KM, Gadzala CA, Kelly PD, Burd LI, Gotoff SP. Selective intrapartum chemoprophylaxis of neonatal group B streptococcal early-onset disease. II. Predictive value of prenatal cultures. Journal of Infectious Diseases. 1983;148(5):802–809.
    1. Schrag S, Gorwitz R, Fultz-Butts K, Schuchat A. Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. Morbidity and Mortality Weekly Report. 2002;51(11):1–22.
    1. Badri MS, Zawaneh S, Cruz AC, et al. Rectal colonization with group B streptococcus: relation to vaginal colonization of pregnant women. Journal of Infectious Diseases. 1977;135(2):308–312.
    1. Wilkinson HW. CAMP-disk test for presumptive identification of group B streptococci. Journal of Clinical Microbiology. 1977;6(1):42–45.
    1. Guerrero C, Martínez J, Menasalvas A, Blázquez R, Rodríguez T, Segovia M. Use of direct latex agglutination testing of selective broth in the detection of group B strepptococcal carriage in pregnant women. European Journal of Clinical Microbiology and Infectious Diseases. 2004;23(1):61–62.
    1. CDC. Laboratory practices for prenatal group B streptococcal screening and reporting—Connecticut, Georgia, Minnesota, 1997-1998. Morbidity and Mortality Weekly Report. 1999;48(20):426–428.
    1. Votava M, Tejkalová M, Drábková M, Unzeitig V, Braveny I. Use of GBS media for rapid detection of group B streptococci in vaginal and rectal swabs from women in labor. European Journal of Clinical Microbiology and Infectious Diseases. 2001;20(2):120–122.
    1. Tazi A, Réglier-Poupet H, Dautezac F, Raymond J, Poyart C. Comparative evaluation of Strepto B ID®chromogenic medium and Granada media for the detection of group B streptococcus from vaginal samples of pregnant women. Journal of Microbiological Methods. 2008;73(3):263–265.
    1. Baker CJ. Inadequacy of rapid immunoassays for intrapartum detection of group B streptococcal carriers. Obstetrics and Gynecology. 1996;88(1):51–55.
    1. Samadi R, Stek A, Greenspoon JS. Evaluation of a rapid optical immunoassay-based test for group B streptococcus colonization in intrapartum patients. Journal of Maternal-Fetal Medicine. 2001;10(3):203–208.
    1. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clinical Microbiology Reviews. 2004;17(3):638–680. table of contents.
    1. Ryan KM, Lencki SG, Elder BL, Northern WI, Khamis HJ, Bofill JA. DNA probe for β-hemolytic group B streptococcus: diagnostic accuracy in threatened preterm labor. Journal of Reproductive Medicine for the Obstetrician and Gynecologist. 1999;44(7):587–591.
    1. Williams-Bouyer N, Reisner BS, Woods GL. Comparison of gen-probe AccuProbe group B streptococcus culture identification test with conventional culture for the detection of group B streptococci in broth cultures of vaginal-anorectal specimens from pregnant women. Diagnostic Microbiology and Infectious Disease. 2000;36(3):159–162.
    1. Montague NS, Cleary TJ, Martinez OV, Procop GW. Detection of group B streptococci in Lim broth by use of group B streptococcus peptide nucleic acid fluorescent in situ hybridization and selective and nonselective agars. Journal of Clinical Microbiology. 2008;46(10):3470–3472.
    1. Peltroche-Llacsahuanga H, Fiandaca MJ, von Oy S, Lütticken R, Haase G. Rapid detection of streptococcus agalactiae from swabs by peptide nucleic acid fluorescence in situ hybridization. Journal of Medical Microbiology. 2010;59(2):179–184.
    1. Goodrich JS, Miller MB. Comparison of culture and 2 real-time polymerase chain reaction assays to detect group B streptococcus during antepartum screening. Diagnostic Microbiology and Infectious Disease. 2007;59(1):17–22.
    1. Block T, Munson E, Culver A, Vaughan K, Hryciuk JE. Comparison of carrot broth-and selective Todd-Hewitt broth-enhanced PCR protocols for real-time detection of streptococcus agalactiae in prenatal vaginal/anorectal specimens. Journal of Clinical Microbiology. 2008;46(11):3615–3620.
    1. Davies HD, Miller MA, Faro S, Gregson D, Kehl SC, Jordan JA. Multicenter study of a rapid molecular-based assay for the diagnosis of group B streptococcus colonization in pregnant women. Clinical Infectious Diseases. 2004;39(8):1129–1135.
    1. Aziz N, Baron EJ, D’Souza H, Nourbakhsh M, Druzin ML, Benitz WE. Comparison of rapid intrapartum screening methods for group B streptococcal vaginal colonization. Journal of Maternal-Fetal and Neonatal Medicine. 2005;18(4):225–229.
    1. Atkins KL, Atkinson RM, Shanks A, Parvin CA, Dunne WM, Gross G. Evaluation of polymerase chain reaction for group B streptococcus detection using an improved culture method. Obstetrics and Gynecology. 2006;108(3):488–491.
    1. Gavino M, Wang E. A comparison of a new rapid real-time polymerase chain reaction system to traditional culture in determining group B streptococcus colonization. American Journal of Obstetrics and Gynecology. 2007;197(4):388.e1–388.e4.
    1. Smith D, Perry JD, Laine L, Galloway A, Gould FK. Comparison of BD GeneOhm real-time polymerase chain reaction with chromogenic and conventional culture methods for detection of group B streptococcus in clinical samples. Diagnostic Microbiology and Infectious Disease. 2008;61(4):369–372.
    1. Edwards RK, Novak-Weekley SM, Koty PP, Davis T, Leeds LJ, Jordan JA. Rapid group B streptococci screening using a real-time polymerase chain reaction assay. Obstetrics and Gynecology. 2008;111(6):1335–1341.
    1. Money D, Dobson S, Cole L, et al. An evaluation of a rapid real time polymerase chain reaction assay for detection of group B streptococcus as part of a neonatal group B streptococcus prevention strategy. Journal of Obstetrics and Gynaecology Canada. 2008;30(9):770–775.
    1. Helali NE, Nguyen JC, Ly A, Giovangrandi Y, Trinquart L. Diagnostic accuracy of a rapid real-time polymerase chain reaction assay for universal intrapartum group b streptococcus screening. Clinical Infectious Diseases. 2009;49(3):417–423.
    1. Alfa MJ, Sepehri S, de Gagne P, Helawa M, Sandhu G, Harding GKM. Real-time PCR assay provides reliable assessment of intrapartum carriage of group B streptococcus. Journal of Clinical Microbiology. 2010;48(9):3095–3099.
    1. Scicchitano LM, Bourbeau PP. Comparative evaluation of the AccuProbe group B streptococcus culture test, the BD GeneOhm Strep B assay, and culture for detection of group B streptococci in pregnant women. Journal of Clinical Microbiology. 2009;47(9):3021–3023.
    1. Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease revised guidelines from CDC, 2010. Morbidity and Mortality Weekly Report. 2010;59(10):1–36.
    1. Thinkhamrop J, Limpongsanurak S, Festin MR, et al. Infections in international pregnancy study: performance of the optical immunoassay test for detection of group B streptococcus. Journal of Clinical Microbiology. 2003;41(11):5288–5290.
    1. Honest H, Sharma S, Khan KS. Rapid tests for group B streptococcus colonization in laboring women: a systematic review. Pediatrics. 2006;117(4):1055–1066.
    1. Daniels J, Gray J, Pattison H, et al. Rapid testing for group B streptococcus during labour: a test accuracy study with evaluation of acceptability and cost-effectiveness. Health Technology Assessment. 2009;13(42):1–154.
    1. Isaacman DJ, Karasic RB, Reynolds EA, Kost SI. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. Journal of Pediatrics. 1996;128(2):190–195.
    1. Kaditis AG, O’Marcaigh AS, Rhodes KH, Weaver AL, Henry NK. Yield of positive blood cultures in pediatric oncology patients by a new method of blood culture collection. Pediatric Infectious Disease Journal. 1996;15(7):615–620.
    1. Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics. 2007;119(5):891–896.
    1. Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. Journal of Pediatrics. 1996;129(2):275–278.
    1. Greenberg DN, Ascher DP, Yoder BA, Hensley DM, Heiman HS, Keith JF., III Sensitivity and specificity of rapid diagnostic tests for detection of group B streptococcal antigen in bacteremic neonates. Journal of Clinical Microbiology. 1995;33(1):193–198.
    1. Williamson M, Fraser SH, Tilse M. Failure of the urinary group B streptococcal antigen test as a screen for neonatal sepsis. Archives of Disease in Childhood. 1995;73(2):F109–F111.
    1. Becker JA, Ascher DP, Mendiola J, et al. False-negative urine latex particle agglutination testing in neonates with group B streptococcal bacteremia: a function of improper test implementation? Clinical Pediatrics. 1993;32(8):467–471.
    1. McIntosh EDG, Jeffery HE. Clinical application of urine antigen detection in early onset group B streptococcal disease. Archives of Disease in Childhood. 1992;67(10):1198–1200.
    1. Hachey WE, Wiswell TE. Limitations in the usefulness of urine latex particle agglutination tests and hematologic measurements in diagnosing neonatal sepsis during the first week of life. Journal of Perinatology. 1992;12(3):240–245.
    1. Golden SM, Stamilio DM, Faux BM, et al. Evaluation of a real-time fluorescent PCR assay for rapid detection of group B Streptococci in neonatal blood. Diagnostic Microbiology and Infectious Disease. 2004;50(1):7–13.
    1. Lin CY, Hsu CH, Huang FY, et al. The changing face of early-onset neonatal sepsis after the implementation of a maternal group B streptococcus screening and intrapartum prophylaxis policy-a study in one medical center. Pediatrics and Neonatology. 2011;52(2):78–84.
    1. Stoll BJ, Hansen NI, Sánchez PJ, et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–826.
    1. Stoll BJ, Hansen N, Fanaroff AA, et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. The New England Journal of Medicine. 2002;347(4):240–247.
    1. Towers CV, Cart MH, Padilla G, Asrat T. Potential consequences of widespread antepartal use of ampicillin. American Journal of Obstetrics and Gynecology. 1998;179(4):879–883.
    1. Mayor-Lynn K, González-Quintero VH, O’Sullivan MJ, Hartstein AI, Roger S, Tamayo M. Comparison of early-onset neonatal sepsis caused by Escherichia coli and group B streptococcus. American Journal of Obstetrics and Gynecology. 2005;192(5):1437–1439.
    1. Alos JI, Lambert T, Courvalin P. Comparison of two molecular methods for tracing nosocomial transmission of Escherichia coli K1 in a neonatal unit. Journal of Clinical Microbiology. 1993;31(7):1704–1709.
    1. Senerwa D, Olsvik O, Mutanda LN, et al. Enteropathogenic Escherichia coli serotype O111: HNT isolated from preterm neonates in Nairobi, Kenya. Journal of Clinical Microbiology. 1989;27(6):1307–1311.
    1. Speer ME, Taber LH, Yow MD, Rudolph AJ, Urteaga J, Waller S. Fulminant neonatal sepsis and necrotizing enterocolitis associated with a “nonenteropathogenic” strain of Escherichia coli. Journal of Pediatrics. 1976;89(1):91–95.
    1. Friesen CA, Cho CT. Characteristic features of neonatal sepsis due to Haemophilus influenzae. Reviews of Infectious Diseases. 1986;8(5):777–780.
    1. Schuchat A, Zywicki SS, Dinsmoor MJ, et al. Risk factors and opportunities for prevention of early-onset neonatal sepsis: a multicenter case-control study. Pediatrics. 2000;105(1):21–26.
    1. Gellin BG, Broome CV, Bibb WF, Weaver RE, Gaventa S, Mascola L. The epidemiology of listeriosis in the United States–1986. American Journal of Epidemiology. 1991;133(4):392–401.
    1. Hof H, Lampidis R, Bensch J. Nosocomial listeria gastroenteritis in a newborn, confirmed by random amplification of polymorphic DNA. Clinical Microbiology and Infection. 2000;6(12):683–686.
    1. Schuchat A, Lizano C, Broome CV, Swaminathan B, Kim C, Winn K. Outbreak of neonatal listeriosis associated with mineral oil. Pediatric Infectious Disease Journal. 1991;10(3):183–189.
    1. Muller-Pebody B, Johnson AP, Heath PT, Gilbert RE, Henderson KL, Sharland M. Empirical treatment of neonatal sepsis: are the current guidelines adequate? Archives of Disease in Childhood. 2011;96(1):F4–F8.
    1. Vergnano S, Menson E, Kennea N, et al. Neonatal infections in England: the neonIN surveillance network. Archives of Disease in Childhood. 2011;96(1):F9–F14.
    1. Cohen-Wolkowiez M, Moran C, Benjamin DK, et al. Early and late onset sepsis in late preterm infants. Pediatric Infectious Disease Journal. 2009;28(12):1052–1056.
    1. le Souef PN, Walters BNJ. Neonatal listeriosis. A summer outbreak. Medical Journal of Australia. 1981;2(4):188–191.
    1. Romero R, Winn HN, Wan M, Hobbins JC. Listeria monocytogenes chorioamnionitis and preterm labor. American Journal of Perinatology. 1988;5(3):286–288.
    1. Wilson CB, Lewis DB. Basis and implications of selectively diminished cytokine production in neonatal susceptibility to infection. Reviews of Infectious Diseases. 1990;12(supplement 4):S410–S420.
    1. Mitchell R. Mackie and McCartney Practical Medical Microbiology. 14th edition. Listeria and Erysipelothrix; pp. 309–312.
    1. Schuchat A, Swaminathan B, Broome CV. Epidemiology of human listeriosis. Clinical Microbiology Reviews. 1991;4(2):169–183.
    1. Samanta S, Farrer K, Breathnach A, Heath PT. Risk factors for late onset gram-negative infections: a case-control study. Archives of Disease in Childhood. 2011;96(1):F15–F18.
    1. Downey LC, Smith PB, Benjamin DK., Jr. Risk factors and prevention of late-onset sepsis in premature infants. Early Human Development. 2010;86(supplement 1):7–12.
    1. Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics. 2002;110(2):285–291.
    1. Jiang JH, Chiu NC, Huang FY, et al. Neonatal sepsis in the neonatal intensive care unit: characteristics of early versus late onset. Journal of Microbiology, Immunology and Infection. 2004;37(5):301–306.
    1. Tojo M, Yamashita N, Goldmann DA, Pier GB. Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. Journal of Infectious Diseases. 1988;157(4):713–722.
    1. Shiro H, Meluleni G, Groll A, et al. The pathogenic role of Staphylococcus epidermidis capsular polysaccharide/adhesin in a low-inoculum rabbit model of prosthetic valve endocarditis. Circulation. 1995;92(9):2715–2722.
    1. D’Angio CT, McGowan KL, Baumgart S, Geme SJ, Harris MC. Surface colonization with coagulase-negative staphylococci in premature neonates. Journal of Pediatrics. 1989;114(6):1029–1034.
    1. Adam B, Baillie GS, Douglas LJ. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. Journal of Medical Microbiology. 2002;51(4):344–349.
    1. Hemels MAC, van den Hoogen A, Verboon-Maciolek MA, Fleer A, Krediet TG. Prevention of neonatal late-onset sepsis associated with the removal of percutaneously inserted central venous catheters in preterm infants. Pediatric Critical Care Medicine. 2011;12(4):445–448.
    1. Freeman W, Weir DC, Whitehead JE, et al. Association between risk factors for coronary heart disease in schoolboys and adult mortality rates in the same localities. Archives of Disease in Childhood. 1990;65(1):78–83.
    1. Avila-Figueroa C, Goldmann DA, Richardson DK, Gray JE, Ferrari A, Freeman J. Intravenous lipid emulsions are the major determinant of coagulase-negative staphylococcal bacteremia in very low birth weight newborns. Pediatric Infectious Disease Journal. 1998;17(1):10–17.
    1. Karlowicz MG, Buescher ES, Surka AE. Fulminant late-onset sepsis in a neonatal intensive care unit, 1988–1997, and the impact of avoiding empiric vancomycin therapy. Pediatrics. 2000;106(6):1387–1390.
    1. Lassiter HA, Watson SW, Seifring ML, Tanner JE. Complement factor 9 deficiency in serum of human neonates. Journal of Infectious Diseases. 1992;166(1):53–57.
    1. Boo NY, Nordiah AJ, Alfizah H, Nor-Rohaini AH, Lim VK. Contamination of breast milk obtained by manual expression and breast pumps in mothers of very low birthweight infants. Journal of Hospital Infection. 2001;49(4):274–281.
    1. Donowitz LG, Marsik FJ, Fisher KA, Wenzel RP. Contaminated breast milk: a source of Klebsiella bacteremia in a newborn intensive care unit. Reviews of Infectious Diseases. 1981;3(4):716–720.
    1. Centers for Disease Control and Prevention. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee, 2001. Morbidity and Mortality Weekly Report. 2002;51(14):297–300.
    1. Parm Ü, Metsvaht T, Sepp E, et al. Mucosal surveillance cultures in predicting Gram-negative late-onset sepsis in neonatal intensive care units. Journal of Hospital Infection. 2011;78(4):327–332.
    1. Arora U, Jaitwani J. Acinetobacter spp.–an emerging pathogen in neonatal septicemia in Amritsar. Indian Journal of Medical Microbiology. 2006;24(1):p. 81.
    1. Corbella X, Montero A, Pujol M, et al. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. Journal of Clinical Microbiology. 2000;38(11):4086–4095.
    1. Roy S, Basu S, Dasgupta S, Singh AK, Viswanathan R. Carbapenem resistance in Acinetobacter baumannii isolated from blood of neonates with sepsis. Indian Journal of Medical Microbiology. 2010;28(4):416–417.
    1. Huang YC, Chou YH, Su LH, Lien RI, Lin TY. Methicillin-resistant Staphylococcus aureus colonization and its association with infection among infants hospitalized in neonatal intensive care units. Pediatrics. 2006;118(2):469–474.
    1. Gerber SI, Jones RC, Scott MV, et al. Management of outbreaks of methicillin-resistant Staphylococcus aureus infection in the neonatal intensive care unit: a consensus statement. Infection Control and Hospital Epidemiology. 2006;27(2):139–145.
    1. Ko KS, Park S, Peck KR, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus spread by neonates transferred from primary obstetrics clinics to a tertiary care hospital in Korea. Infection Control and Hospital Epidemiology. 2006;27(6):593–597.
    1. Sax H, Posfay-Barbe K, Harbarth S, et al. Control of a cluster of community-associated, methicillin-resistant Staphylococcus aureus in neonatology. Journal of Hospital Infection. 2006;63(1):93–100.
    1. Behari P, Englund J, Alcasid G, Garcia-Houchins S, Weber SG. Transmission of methicillin-resistant Staphylococcus aureus to preterm infants through breast milk. Infection Control and Hospital Epidemiology. 2004;25(9):778–780.
    1. Denniston S, Riordan FAI. Staphylococcus aureus bacteraemia in children and neonates: a 10 year retrospective review. Journal of Infection. 2006;53(6):387–393.
    1. Fortunov RM, Hulten KG, Hammerman WA, Mason EO, Jr., Kaplan SL. Evaluation and treatment of community-acquired Staphylococcus aureus infections in term and late-preterm previously healthy neonates. Pediatrics. 2007;120(5):937–945.
    1. Watson J, Jones RC, Cortes C, et al. Community-associated methicillin-resistant Staphylococcus aureus infection among healthy newborns–Chicago and Los Angeles County, 2004. Morbidity and Mortality Weekly Report. 2006;55(12):329–332.
    1. Aletayeb SMH, Khosravi AD, Dehdashtian M, Kompani F, Mortazavi SM, Aramesh MR. Identification of bacterial agents and antimicrobial susceptibility of neonatal sepsis: a 54-month study in a tertiary hospital. African Journal of Microbiology Research. 2011;5(5):528–531.
    1. Jain A, Mondal R. Prevalence & antimicrobial resistance pattern of extended spectrum β-lactamase producing Klebsiella spp isolated from cases of neonatal septicaemia. Indian Journal of Medical Research. 2007;125(1):89–94.
    1. Mammina C, di Carlo P, Cipolla D, et al. Surveillance of multidrug-resistant gram-negative bacilli in a neonatal intensive care unit: prominent role of cross transmission. American Journal of Infection Control. 2007;35(4):222–230.
    1. Crivaro V, Bagattini M, Salza MF, et al. Risk factors for extended-spectrum β-lactamase-producing Serratia marcescens and Klebsiella pneumoniae acquisition in a neonatal intensive care unit. Journal of Hospital Infection. 2007;67(2):135–141.
    1. Linkin DR, Fishman NO, Patel JB, Merrill JD, Lautenbach E. Risk factors for extended-spectrum beta-lactamase-producing enterobacteriaceae in a neonatal intensive care unit. Infection Control and Hospital Epidemiology. 2004;25(9):781–783.
    1. Pessoa-Silva CL, Moreira BM, Almeida VC, et al. Extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit: risk factors for infection and colonization. Journal of Hospital Infection. 2003;53(3):198–206.
    1. Kristóf K, Szabó D, Marsh JW, et al. Extended-spectrum beta-lactamase-producing Klebsiella spp. in a neonatal intensive care unit: risk factors for the infection and the dynamics of the molecular epidemiology. European Journal of Clinical Microbiology and Infectious Diseases. 2007;26(8):563–570.
    1. Klein J, Marcy S. Bacterial sepsis and meningitidis. In: Remington JS, Klein JO, editors. Infectious Diseases of the Fetus and Newborn Infant. 3rd edition. Philadelphia, Pa, USA: WB Saunders; 1990. pp. 601–656.
    1. Stenson B. Blood cultures volume from neonates. 1999.
    1. Becton Dickinson Microbiological Systems. BECTEC PEDS PLUS/F Culture Vials: Instruction Leaflet. Sparks, Md, USA: Becton Dickinson and Company; 2000.
    1. Buttery J, Herbert M, Tallach I, et al. Neonatal Blood Cultures: How Much Blood Do We Take? Istanbul, Turkey: European Society of Pediatric Infectious Diseases;
    1. Dietzman DE, Fischer GW, Schoenknecht FD. Neonatal Escherichia coli septicemia–bacterial counts in blood. Journal of Pediatrics. 1974;85(1):128–130.
    1. Washington JA, II, Ilstrup DM. Blood cultures: issues and controversies. Reviews of Infectious Diseases. 1986;8(5):792–802.
    1. Kellogg JA, Ferrentino FL, Goodstein MH, Liss J, Shapiro SL, Bankert DA. Frequency of low level bacteremia in infants from birth to two months of age. Pediatric Infectious Disease Journal. 1997;16(4):381–385.
    1. Kellogg JA, Manzella JP, Bankert DA. Frequency of low-level bacteremia in children from birth to fifteen years of age. Journal of Clinical Microbiology. 2000;38(6):2181–2185.
    1. Phillips SE, Bradley JS. Bacteremia detected by lysis direct plating in a neonatal intensive care unit. Journal of Clinical Microbiology. 1990;28(1):1–4.
    1. Kite P, Langdale V, Todd N, Millar MR, MacKay P. Direct isolation of coagulase-negative staphylococci from neonatal blood samples. Journal of Hospital Infection. 1989;14(2):135–140.
    1. Durbin WA, Szymczak EG, Goldmann DA. Quantitative blood cultures in childhood bacteremia. Journal of Pediatrics. 1978;92(5):778–780.
    1. Welch DF, Scribner RK, Hensel D. Evaluation of a lysis direct plating method for pediatric blood cultures. Journal of Clinical Microbiology. 1985;21(6):955–958.
    1. Brown DR, Kutler D, Rai B, Chan T, Cohen M. Bacterial concentration and blood volume required for a positive blood culture. Journal of Perinatology. 1995;15(2):157–159.
    1. Solorzano-Santos F, Miranda-Novales MG, Leanos-Miranda B, Diaz-Ponce H, Palacios-Saucedo G. A blood micro-culture system for the diagnosis of bacteremia in pediatric patients. Scandinavian Journal of Infectious Diseases. 1998;30(5):481–483.
    1. Aronson MD, Bor DH. Blood cultures. Annals of Internal Medicine. 1987;106(2):246–253.
    1. Auckenthaler R, Ilstrup DM, Washington JA., II Comparison of recovery of organisms from blood cultures diluted 10% (volume/volume) and 20% (volume/volume) Journal of Clinical Microbiology. 1982;15(5):860–864.
    1. Kennaugh JK, Gregory WW, Powell KR, Hendley JO. The effect of dilution during culture on detection of low concentrations of bacteria in blood. Pediatric Infectious Disease. 1984;3(4):317–318.
    1. Kovatch AL, Wald ER. Evaluation of the febrile neonate. Seminars in Perinatology. 1985;9(1):12–19.
    1. Wientzen RL, Jr., McCracken GH., Jr. Pathogenesis and management of neonatal sepsis and meningitis. Current Problems in Pediatrics. 1977;8(2):1–61.
    1. Wiswell TE, Hachey WE. Multiple site blood cultures in the initial evaluation for neonatal sepsis during the first week of life. Pediatric Infectious Disease Journal. 1991;10(5):365–369.
    1. Wilson HD, Eichenwald HF. Sepsis neonatorum. Pediatric Clinics of North America. 1974;21(3):571–582.
    1. Gotoff SP, Behrman RE. Neonatal septicemia. Journal of Pediatrics. 1970;76(1):142–153.
    1. Cockerill FR, III, Hughes JG, Vetter EA, et al. Analysis of 281,797 consecutive blood cultures performed over an eight-year period: trends in microorganisms isolated and the value of anaerobic culture of blood. Clinical Infectious Diseases. 1997;24(3):403–418.
    1. Shanson DC. Blood culture technique: current controversies. Journal of Antimicrobial Chemotherapy. 1990;25(supplement C):17–29.
    1. Fanaroff AA, Korones SB, Wright LL, et al. Incidence, presenting features, risk factors and significance of late onset septicemia in very low birth weight infants. Pediatric Infectious Disease Journal. 1998;17(7):593–598.
    1. Stoll BJ, Gordon T, Korones SB, et al. Late-onset sepsis in very low birth weight neonates: a report from the national institute of child health and human development neonatal research network. Journal of Pediatrics. 1996;129(1):63–71.
    1. Abramson JS, Hampton KD, Babu S, Wasilauskas BL, Marcon MJ. The use of C-reactive protein from cerebrospinal fluid for differentiating meningitis from other central nervous system diseases. Journal of Infectious Diseases. 1985;151(5):854–858.
    1. Weisse ME, Bass JW, Young LM. Pediatric blood culture: comparison of yields using aerobic, anaerobic and hypertonic media. Pediatric Infectious Disease Journal. 1992;11(2):123–125.
    1. Yagupsky P, Nolte FS. Quantitative aspects of septicemia. Clinical Microbiology Reviews. 1990;3(3):269–279.
    1. Sarkar S, Bhagat I, DeCristofaro JD, Wiswell TE, Spitzer AR. A study of the role of multiple site blood cultures in the evaluation of neonatal sepsis. Journal of Perinatology. 2006;26(1):18–22.
    1. Li J, Plorde JJ, Carlson LG. Effects of volume and periodicity on blood cultures. Journal of Clinical Microbiology. 1994;32(11):2829–2831.
    1. Guerti K, Devos H, Ieven MM, Mahieu LM. Time to positivity of neonatal blood cultures: fast and furious? Journal of Medical Microbiology. 2011;60(4):446–453.
    1. Buttery JP. Blood cultures in newborns and children: optimising an everyday test. Archives of Disease in Childhood. 2002;87(1):F25–F28.
    1. Thylefors JD, Harbarth S, Pittet D. Increasing bacteremia due to coagulase-negative staphylococci: fiction or reality? Infection Control and Hospital Epidemiology. 1998;19(8):581–589.
    1. Weinstein MP. Current blood culture methods and systems: clinical concepts, technology, and interpretation of results. Clinical Infectious Diseases. 1996;23(1):40–46.
    1. Hurst MK, Yoder BA. Detection of bacteremia in young infants: is 48 hours adequate? Pediatric Infectious Disease Journal. 1995;14(8):711–713.
    1. McGowan KL, Foster JA, Coffin SE. Outpatient pediatric blood cultures: time to positivity. Pediatrics. 2000;106(2):251–255.
    1. Fujimori M, Hisata K, Nagata S, et al. Efficacy of bacterial ribosomal RNA-targeted reverse transcription-quantitative PCR for detecting neonatal sepsis: a case control study. BMC Pediatrics. 2010;10:p. 53.
    1. del Vecchio A, Laforgia N, Capasso M, Iolascon A, Latini G. The role of molecular genetics in the pathogenesis and diagnosis of neonatal sepsis. Clinics in Perinatology. 2004;31(1):53–67.
    1. Jordan JA, Durso MB. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. Journal of Molecular Diagnostics. 2005;7(5):575–581.
    1. Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123(1):58–66.
    1. Paolucci M, Landini MP, Sambri V. Conventional and molecular techniques for the early diagnosis of bacteraemia. International Journal of Antimicrobial Agents. 2010;36(supplement 2):S6–S16.
    1. Venkatesh M, Flores A, Luna RA, Versalovic J. Molecular microbiological methods in the diagnosis of neonatal sepsis. Expert Review of Anti-Infective Therapy. 2010;8(9):1037–1048.
    1. Woese CR. Bacterial evolution. Microbiological Reviews. 1987;51(2):221–271.
    1. Relman DA. The search for unrecognized pathogens. Science. 1999;284(5418):1308–1310.
    1. Evertsson U, Monstein HJ, Johansson AG. Detection and identification of fungi in blood using broad-range 28S rDNA PCR amplification and species-specific hybridisation. APMIS. 2000;108(5):385–392.
    1. Schabereiter-Gurtner C, Nehr M, Apfalter P, Makristathis A, Rotter ML, Hirschl AM. Evaluation of a protocol for molecular broad-range diagnosis of culture-negative bacterial infections in clinical routine diagnosis. Journal of Applied Microbiology. 2008;104(4):1228–1237.
    1. Reier-Nilsen T, Farstad T, Nakstad B, Lauvrak V, Steinbakk M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC Pediatrics. 2009;9:p. 5.
    1. Laforgia N, Coppola B, Carbone R, Grassi A, Mautone A, Iolascon A. Rapid detection of neonatal sepsis using polymerase chain reaction. Acta Paediatrica. 1997;86(10):1097–1099.
    1. Jordan JA, Durso MB, Butchko AR, Jones JG, Brozanski BS. Evaluating the near-term infant for early early onset sepsis: progress and challenges to consider 16S rDNA polymerase chain reaction testing. Journal of Molecular Diagnostics. 2006;8(3):357–363.
    1. Esparcia O, Montemayor M, Ginovart G, et al. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis. Diagnostic Microbiology and Infectious Disease. 2011;69(2):153–160.
    1. Yadav AK, Wilson CG, Prasad PL, Menon PK. Polymerase chain reaction in rapid diagnosis of neonatal sepsis. Indian Pediatrics. 2005;42(7):681–685.
    1. Wu YD, Chen LH, Wu XJ, et al. Gram stain-specific-probe-based real-time PCR for diagnosis and discrimination of bacterial neonatal sepsis. Journal of Clinical Microbiology. 2008;46(8):2613–2619.
    1. Chan KYY, Lam HS, Cheung HM, et al. Rapid identification and differentiation of Gram-negative and Gram-positive bacterial bloodstream infections by quantitative polymerase chain reaction in preterm infants. Critical Care Medicine. 2009;37(8):2441–2447.
    1. Enomoto M, Morioka I, Morisawa T, Yokoyama N, Matsuo M. A novel diagnostic tool for detecting neonatal infections using multiplex polymerase chain reaction. Neonatology. 2009;96(2):102–108.
    1. Dutta S, Narang A, Chakraborty A, Ray P. Diagnosis of neonatal sepsis using universal primer polymerase chain reaction before and after starting antibiotic drug therapy. Archives of Pediatrics and Adolescent Medicine. 2009;163(1):6–11.
    1. Paolucci M, Capretti MG, dal Monte P, et al. Laboratory diagnosis of late-onset sepsis in newborns by multiplex real-time PCR. Journal of Medical Microbiology. 2009;58(4):533–534.
    1. Lucignano B, Ranno S, Liesenfeld O, et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. Journal of Clinical Microbiology. 2011;49(6):2252–2258.

Source: PubMed

3
Sottoscrivi