Pericoronary Fat Attenuation Index Is Associated With Vulnerable Plaque Components and Local Immune-Inflammatory Activation in Patients With Non-ST Elevation Acute Coronary Syndrome

Jia Teng Sun, Xin Cheng Sheng, Qi Feng, Yan Yin, Zheng Li, Song Ding, Jun Pu, Jia Teng Sun, Xin Cheng Sheng, Qi Feng, Yan Yin, Zheng Li, Song Ding, Jun Pu

Abstract

Background The pericoronary fat attenuation index (FAI) is assessed using standard coronary computed tomography angiography, and it has emerged as a novel imaging biomarker of coronary inflammation. The present study assessed whether increased pericoronary FAI values on coronary computed tomography angiography were associated with vulnerable plaque components and their intracellular cytokine levels in patients with non-ST elevation acute coronary syndrome. Methods and Results A total of 195 lesions in 130 patients with non-ST elevation acute coronary syndrome were prospectively included. Lesion-specific pericoronary FAI, plaque components and other plaque features were evaluated by coronary computed tomography angiography. Local T cell subsets and their intracellular cytokine levels were detected by flow cytometry. Lesions with pericoronary FAI values >-70.1 Hounsfield units exhibited spotty calcification (43.1% versus 25.0%, P=0.015) and low-attenuation plaques (17.6% versus 4.2%, P=0.016) more frequently than lesions with lower pericoronary FAI values. Further quantitative plaque compositional analysis showed that increased necrotic core volume (Pearson's r=0.324, P<0.001) and fibrofatty volume (Pearson's r=0.270, P<0.001) were positively associated with the pericoronary FAI, and fibrous volume (Pearson's r=-0.333, P<0.001) showed a negative association. An increasing proinflammatory intracellular cytokine profile was found in lesions with higher pericoronary FAI values. Conclusions The pericoronary FAI may be a reliable indicator of local immune-inflammatory response activation, which is closely related to plaque vulnerability. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04792047.

Keywords: coronary computed tomography angiography; non‐ST elevation acute coronary syndromes; pericoronary fat attenuation index; vulnerable plaque.

Figures

Figure 1. Flowchart of patient enrollment.
Figure 1. Flowchart of patient enrollment.
ACS indicates acute coronary syndrome; CCTA, coronary computed tomography angiography; and FAI, fat attenuation index.
Figure 2. Example of coronary plaque quantitative…
Figure 2. Example of coronary plaque quantitative analysis and pericoronary FAI phenotyping of a lesion in the proximal LAD artery segment.
A, Longitudinal straightened multiplanar reconstruction, where “O” is the point of minimum lumen area. B, Cross‐sectional view at the point of minimum lumen area. C, Graph of lumen and vessel area as a function of vessel length. D, Straightened view of FAI phenotyping. E, Cross‐section view of FAI phenotyping. FAI indicates fat attenuation index; and LAD, left anterior descending.
Figure 3. Correlation between FAI values and…
Figure 3. Correlation between FAI values and mean plaque burden (A), fibrous volume (B), necrotic core volume (C), fibrous fatty volume (D).
FAI indicates fat attenuation index; and HU, Hounsfield unit.

References

    1. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57. doi: 10.1016/j.jacc.2009.02.068
    1. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir E‐A, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, et al. Single‐cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25:1576–1588. doi: 10.1038/s41591-019-0590-4
    1. Toutouzas K, Benetos G, Karanasos A, Chatzizisis YS, Giannopoulos AA, Tousoulis D. Vulnerable plaque imaging: updates on new pathobiological mechanisms. Eur Heart J. 2015;36:3147–3154. doi: 10.1093/eurheartj/ehv508
    1. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379–389. doi: 10.1038/nrcardio.2014.62
    1. Mushenkova NV, Summerhill VI, Zhang D, Romanenko EB, Grechko AV, Orekhov AN. Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque. Int J Mol Sci. 2020;21. doi: 10.3390/ijms21082992
    1. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, et al. A prospective natural‐history study of coronary atherosclerosis. New Engl J Med. 2011;364:226–235. doi: 10.1056/NEJMoa1002358
    1. Andreini D, Magnoni M, Conte E, Masson S, Mushtaq S, Berti S, Canestrari M, Casolo G, Gabrielli D, Latini R, et al. Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events. JACC Cardiovasc Imaging. 2020;13:1704–1717. doi: 10.1016/j.jcmg.2019.06.019
    1. Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, Margaritis M, Shirodaria C, Kampoli A‐M, Akoumianakis I, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9. doi: 10.1126/scitranslmed.aal2658
    1. Antoniades C, Kotanidis CP, Berman DS. State‐of‐the‐art review article. Atherosclerosis affecting fat: what can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr. 2019;13:288–296. doi: 10.1016/j.jcct.2019.03.006
    1. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, Thomas S, Herdman L, Kotanidis CP, Thomas KE, et al. Non‐invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post‐hoc analysis of prospective outcome data. Lancet. 2018;392:929–939. doi: 10.1016/S0140-6736(18)31114-0
    1. Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, Gransar H, Albrecht MH, Tamarappoo BK, Berman DS, et al. Pericoronary adipose tissue computed tomography attenuation and high‐risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 2018;3:858–863. doi: 10.1001/jamacardio.2018.1997
    1. Collet J‐P, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST‐segment elevation. Eur Heart J. 2021;42:1289–1367. doi: 10.1093/eurheartj/ehaa575
    1. Mangold A, Ondracek AS, Hofbauer TM, Scherz T, Artner T, Panagiotides N, Beitzke D, Ruzicka G, Nistler S, Wohlschläger‐Krenn E, et al. Culprit site extracellular DNA and microvascular obstruction in ST‐elevation myocardial infarction. Cardiovasc Res. 2021;cvab217. doi: 10.1093/cvr/cvab217
    1. Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, Rai H, Skurk C, Lauten A, Mochmann H‐C, et al. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO‐ACS study. Eur Heart J. 2020;41:3549–3560. doi: 10.1093/eurheartj/ehaa703
    1. Crea F, Libby P. Acute coronary syndromes: the way forward from mechanisms to precision treatment. Circulation. 2017;136:1155–1166. doi: 10.1161/CIRCULATIONAHA.117.029870
    1. Mangge H, Almer G. Immune‐mediated inflammation in vulnerable atherosclerotic plaques. Molecules (Basel, Switzerland). 2019;24:3072. doi: 10.3390/molecules24173072
    1. Pu J, Mintz GS, Brilakis ES, Banerjee S, Abdel‐Karim A‐R R, Maini B, Biro S, Lee J‐B, Stone GW, Weisz G, et al. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near‐infrared spectroscopy. Eur Heart J. 2012;33:372–383. doi: 10.1093/eurheartj/ehr387
    1. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10:582–593. doi: 10.1016/j.jcmg.2017.03.005
    1. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, Hayabuchi N, Imaizumi T. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–1831. doi: 10.1016/j.jacc.2006.03.069
    1. Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16:389–406. doi: 10.1038/s41569-019-0169-2
    1. Schuurman A‐S, Vroegindewey MM, Kardys I, Oemrawsingh RM, Garcia‐Garcia HM, van Geuns R‐J, Regar E, Van Mieghem NM, Ligthart J, Serruys PW, et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J Am Coll Cardiol. 2018;72:2003–2011. doi: 10.1016/j.jacc.2018.08.2140
    1. Joly AL, Seitz C, Liu S, Kuznetsov NV, Gertow K, Westerberg LS, Paulsson‐Berne G, Hansson GK, Andersson J. Alternative splicing of foxp3 controls regulatory T cell effector functions and is associated with human atherosclerotic plaque stability. Circ Res. 2018;122:1385–1394. doi: 10.1161/CIRCRESAHA.117.312340
    1. George J, Schwartzenberg S, Medvedovsky D, Jonas M, Charach G, Afek A, Shamiss A. Regulatory T cells and il‐10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis. 2012;222:519–523. doi: 10.1016/j.atherosclerosis.2012.03.016
    1. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124:315–327. doi: 10.1161/CIRCRESAHA.118.313591
    1. Elnabawi YA, Oikonomou EK, Dey AK, Mancio J, Rodante JA, Aksentijevich M, Choi H, Keel A, Erb‐Alvarez J, Teague HL, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index. JAMA Cardiol. 2019;4:885–891. doi: 10.1001/jamacardio.2019.2589
    1. Pinderski Oslund LJ, Hedrick CC, Olvera T, Hagenbaugh A, Territo M, Berliner JA, Fyfe AI. Interleukin‐10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol. 1999;19:2847–2853. doi: 10.1161/01.ATV.19.12.2847
    1. Battes LC, Cheng JM, Oemrawsingh RM, Boersma E, Garcia‐Garcia HM, de Boer SPM, Buljubasic N, Mieghem NAV, Regar E, Geuns R‐J, et al. Circulating cytokines in relation to the extent and composition of coronary atherosclerosis: results from the ATHEROREMO‐IVUS study. Atherosclerosis. 2014;236:18–24. doi: 10.1016/j.atherosclerosis.2014.06.010
    1. Dai X, Deng J, Yu M, Lu Z, Shen C, Zhang J. Perivascular fat attenuation index and high‐risk plaque features evaluated by coronary CT angiography: relationship with serum inflammatory marker level. Int J Cardiovasc Imaging. 2020;36:723–730. doi: 10.1007/s10554-019-01758-8
    1. Lluberas N, Trías N, Brugnini A, Mila R, Vignolo G, Trujillo P, Durán A, Grille S, Lluberas R, Lens D. Lymphocyte subpopulations in myocardial infarction: a comparison between peripheral and intracoronary blood. SpringerPlus. 2015;4:744. doi: 10.1186/s40064-015-1532-3

Source: PubMed

3
Sottoscrivi