Training Using a Commercial Immersive Virtual Reality System on Hand-Eye Coordination and Reaction Time in Young Musicians: A Pilot Study

Sebastian Rutkowski, Mateusz Adamczyk, Agnieszka Pastuła, Edyta Gos, Carlos Luque-Moreno, Anna Rutkowska, Sebastian Rutkowski, Mateusz Adamczyk, Agnieszka Pastuła, Edyta Gos, Carlos Luque-Moreno, Anna Rutkowska

Abstract

The implementation of virtual reality (VR) opens up a wide range of possibilities for the development of dexterity, speed and precision of movements. The aim of this study was to investigate whether immersive VR training affected the hand-eye coordination and reaction time in students of the state music school. This study implemented a single-group pre-post study design. This study enrolled 14 individuals, submitted to a 15 min training session of the immersive music game "Beat Saber", once a day for 5 consecutive days. The plate-tapping test (PTT) and the ruler-drop test (Ditrich's test) were used to assess the reaction time. Trial-making test (TMT) A and TMT B were used to assess coordination and visual attention. Analysis of the results showed a statistically significant improvement in hand-eye coordination and reaction time of music school students using the TMT-A (p < 0.002), TMT-B (p < 0.001), Ditrich's test for the non-dominant hand (0.025) and PTT (0.0001) after applying a week-long training period in immersive VR. The results obtained in the present study show that the VR system, along with the immersive music game, has the potential to improve hand-eye coordination and reaction time in young musicians, which may lead to the faster mastering of a musical instrument.

Keywords: TMT; VR; hand–eye coordination; immersion; reaction time; virtual reality.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Example of a training session.

References

    1. Mayer A.B., Caminiti R. Parieto-frontal networks for eye-hand coordination and movements. Handb. Clin. Neurol. 2018;151:499–524. doi: 10.1016/B978-0-444-63622-5.00026-7.
    1. Mayer A.B., Caminiti R., Lacquaniti F., Zago M. Multiple levels of representation of reaching in the parieto-frontal network. Cereb. Cortex. 2003;13:1009–1022. doi: 10.1093/cercor/13.10.1009.
    1. Laby D.M., Kirschen D.G., Govindarajulu U., de Land P. The Hand-eye Coordination of Professional Baseball Players: The Relationship to Batting. Optom. Vis. Sci. 2018;95:557–567. doi: 10.1097/OPX.0000000000001239.
    1. Gautam Y., Bade M. Effect of Auditory Interference on Visual Simple Reaction Time. Kathmandu Univ. Med. J. 2017;15:329–331.
    1. Ball K., Edwards J.D., Ross L.A. The impact of speed of processing training on cognitive and everyday functions. J. Gerontol. B Psychol. Sci. Soc. Sci. 2007;62:19–31. doi: 10.1093/geronb/62.special_issue_1.19.
    1. Draheim C., Mashburn C.A., Martin J.D., Engle R.W. Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychol. Bull. 2019;145:508–535. doi: 10.1037/bul0000192.
    1. Reybrouck M., Vuust P., Brattico E. Neuroplasticity Insights of Neural Reorganization. IntechOpen; London, UK: 2017. Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations.
    1. Králová E., Kołodziejski M. Music and movement activities for preschool children as an incentive to foster relationships and the expression of movement. Elem. Educ. Theory Pract. 2016;31:185–205.
    1. Kraus N., Hornickel J., Strait D.L., Slater J., Thompson E. Engagement in community music classes sparks neuroplasticity and language development in children from disadvantaged backgrounds. Front. Psychol. 2014;5:1403. doi: 10.3389/fpsyg.2014.01403.
    1. Fauvel B., Groussard M., Chetelat G., Fouquet M., Landeau B., Eustache F., Desgranges B., Platel H. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. Neuroimage. 2014;90:179–188. doi: 10.1016/j.neuroimage.2013.12.065.
    1. Trost W., Ethofer T., Zentner M., Vuilleumier P. Mapping aesthetic musical emotions in the brain. Cereb. Cortex. 2012;22:2769–2783. doi: 10.1093/cercor/bhr353.
    1. Burunat I., Brattico E., Puolivali T., Ristaniemi T., Sams M., Toiviainen P. Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening. PLoS ONE. 2015;10:e0138238. doi: 10.1371/journal.pone.0138238.
    1. Srinivasan S.M., Bhat A.N. A review of “music and movement” therapies for children with autism: Embodied interventions for multisystem development. Front. Integr. Neurosci. 2013;7:22. doi: 10.3389/fnint.2013.00022.
    1. Weiss P., Kizony R., Feintuch U., Katz N. Virtual Reality in Neurorehabilitation. Cambridge University Press; Cambridge, UK: 2006. pp. 182–197.
    1. Radianti J., Majchrzak T.A., Fromm J., Wohlgenannt I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020;147:103778. doi: 10.1016/j.compedu.2019.103778.
    1. Rutkowska A., Rutkowski S., Gieracha J.S. The use of total immersion in the rehabilitation process. Med. Rehabil. 2020;24:27–30. doi: 10.5604/01.3001.0014.4120.
    1. Slater M. Immersion and the illusion of presence in virtual reality. Br. J. Psychol. 2018;109:431–433. doi: 10.1111/bjop.12305.
    1. Alqahtani A.S., Daghestani L.F., Ibrahim L.F. Environments and System Types of Virtual Reality Technology in STEM: A Survey. Int. J. Adv. Comput. Sci. 2017;8:77–89.
    1. Middleton K.K., Hamilton T., Tsai P.C., Middleton D.B., Falcone J.L., Hamad G. Improved nondominant hand performance on a laparoscopic virtual reality simulator after playing the Nintendo Wii. Surg. Endosc. 2013;27:4224–4231. doi: 10.1007/s00464-013-3027-z.
    1. Harrington C.M., Chaitanya V., Dicker P., Traynor O., Kavanagh D.O. Playing to your skills: A randomised controlled trial evaluating a dedicated video game for minimally invasive surgery. Surg. Endosc. 2018;32:3813–3821. doi: 10.1007/s00464-018-6107-2.
    1. A World Medical World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Tsigilis N., Douda H., Tokmakidis S.P. Test-retest reliability of the Eurofit test battery administered to university students. Percept. Mot. Ski. 2002;95:1295–1300. doi: 10.2466/pms.2002.95.3f.1295.
    1. Dianzenza E.S., Maszczyk L. The impact of fatigue on agility and responsiveness in boxing. Biomed. Hum. Kinet. 2019;11:131–135. doi: 10.2478/bhk-2019-0018.
    1. Dobbs B.M., Shergill S.S. How effective is the Trail Making Test (Parts A and B) in identifying cognitively impaired drivers? Age Ageing. 2013;42:577–581. doi: 10.1093/ageing/aft073.
    1. Fruin M.L., Rankin J.W. Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med. Sci. Sports Exerc. 2004;36:1063–1069. doi: 10.1249/01.MSS.0000128144.91337.38.
    1. Pourazar M., Mirakhori F., Hemayattalab R., Bagherzadeh F. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial. Dev. Neurorehabil. 2018;21:515–520. doi: 10.1080/17518423.2017.1368730.
    1. Schlaug G. Musicians and music making as a model for the study of brain plasticity. Music Neurol. Neurosci. Evol. Musical Brain Med. Cond. Ther. 2015;217:37–55. doi: 10.1016/bs.pbr.2014.11.020.
    1. Alluri V., Toiviainen P., Burunat I., Kliuchko M., Vuust P., Brattico E. Connectivity patterns during music listening: Evidence for action-based processing in musicians. Hum. Brain Mapp. 2017;38:2955–2970. doi: 10.1002/hbm.23565.
    1. Janata P., Tillmann B., Bharucha J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2002;2:121–140. doi: 10.3758/CABN.2.2.121.
    1. Bissonnette J., Dube F., Provencher M.D., Sala M.T.M. Virtual Reality Exposure Training for Musicians: Its Effect on Performance Anxiety and Quality. Med. Probl. Perform. Art. 2015;30:169–177. doi: 10.21091/mppa.2015.3032.
    1. Williamon A., Aufegger L., Eiholzer H. Simulating and stimulating performance: Introducing distributed simulation to enhance musical learning and performance. Front. Psychol. 2014;5:25. doi: 10.3389/fpsyg.2014.00025.
    1. You S.H., Jang S.H., Kim Y.H., Kwon Y.H., Barrow I., Hallett M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev. Med. Child. Neurol. 2005;47:628–635. doi: 10.1111/j.1469-8749.2005.tb01216.x.
    1. Gomez M.M., de Icco R., Avenali M., Balsamo F. Multisensory integration techniques in neurorehabilitation: The use of virtual reality as a rehabilitation tool. Confin. Cephalalgica. 2018;28:81–85.
    1. Gomez M.M., Malighetti C., Cipresso P., Pedroli E., Realdon O., Mantovani F., Riva G. Changing Body Representation Through Full Body Ownership Illusions Might Foster Motor Rehabilitation Outcome in Patients With Stroke. Front. Psychol. 2020;11:1962. doi: 10.3389/fpsyg.2020.01962.
    1. Patel A.V., Friedenreich C.M., Moore S.C., Hayes S.C., Silver J.K., Campbell K.L., Stone K.W., Gerber L.H., George S.M., Fulton J.E., et al. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med. Sci. Sports Exerc. 2019;51:2391–2402. doi: 10.1249/MSS.0000000000002117.
    1. Jancke L., Schlaug G., Steinmetz H. Hand skill asymmetry in professional musicians. Brain Cogn. 1997;34:424–432. doi: 10.1006/brcg.1997.0922.
    1. Correa A.G.D., de Assis G.A., do Nascimento M., de Deus Lopes R. Perceptions of clinical utility of an Augmented Reality musical software among health care professionals. Disabil. Rehabil. Assist. Technol. 2017;12:205–216. doi: 10.3109/17483107.2015.1089328.
    1. Burdea G., Polistico K., Krishnamoorthy A., House G., Rethage D., Hundal J., Damiani F., Pollack S. Feasibility study of the BrightBrainer (TM) integrative cognitive rehabilitation system for elderly with dementia. Disabil. Rehabil. Assist. 2015;10:421–432. doi: 10.3109/17483107.2014.900575.
    1. Chandra S., Sharma G., Salam A., Jha D., Mittal A. Playing Action Video Games a Key to Cognitive Enhancement. Procedia Comput. Sci. 2016;84:115–122. doi: 10.1016/j.procs.2016.04.074.
    1. Bisoglio J., Michaels T.I., Mervis J.E., Ashinoff B.K. Cognitive enhancement through action video game training: Great expectations require greater evidence. Front. Psychol. 2014;5:136. doi: 10.3389/fpsyg.2014.00136.
    1. McDermott A.F., Bavelier D., Green C.S. Memory abilities in action video game players. Comput. Hum. Behav. 2014;34:69–78. doi: 10.1016/j.chb.2014.01.018.
    1. Bavelier D., Green C.S., Pouget A., Schrater P. Brain plasticity through the life span: Learning to learn and action video games. Annu. Rev. Neurosci. 2012;35:391–416. doi: 10.1146/annurev-neuro-060909-152832.
    1. Glueck A.C., Han D.Y. Improvement potentials in balance and visuo-motor reaction time after mixed reality action game play: A pilot study. Virtual Real Lond. 2020;24:223–229. doi: 10.1007/s10055-019-00392-y.
    1. Rutkowski S., Kiper P., Cacciante L., Cieslik B., Mazurek J., Turolla A., Gieracha J.S. Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis. J. Rehabil. Med. 2020;52:jrm00121. doi: 10.2340/16501977-2755.
    1. Shin J.W., Song G.B., Hwangbo G. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 2015;27:2151–2154. doi: 10.1589/jpts.27.2151.
    1. Straker L.M., Campbell A.C., Jensen L.M., Metcalf D.R., Smith A.J., Abbott R.A., Pollock C.M., Piek J.P. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health. 2011;11:654. doi: 10.1186/1471-2458-11-654.
    1. Erhardsson M., Murphy M.A., Sunnerhagen K.S. Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: A single-case design study. J. Neuroeng. Rehabil. 2020;17:154. doi: 10.1186/s12984-020-00788-x.
    1. Szpak A., Michalski S.C., Loetscher T. Exergaming With Beat Saber: An Investigation of Virtual Reality Aftereffects. J. Med. Internet Res. 2020;22:e19840. doi: 10.2196/19840.

Source: PubMed

3
Sottoscrivi