Abnormalities of the oculomotor function in type 1 diabetes and diabetic neuropathy

Francesca D'Addio, Ida Pastore, Cristian Loretelli, Alessandro Valderrama-Vasquez, Vera Usuelli, Emma Assi, Chiara Mameli, Maddalena Macedoni, Anna Maestroni, Antonio Rossi, Maria Elena Lunati, Paola Silvia Morpurgo, Alessandra Gandolfi, Laura Montefusco, Andrea Mario Bolla, Moufida Ben Nasr, Stefania Di Maggio, Lisa Melzi, Giovanni Staurenghi, Antonio Secchi, Stefania Bianchi Marzoli, Gianvincenzo Zuccotti, Paolo Fiorina, Francesca D'Addio, Ida Pastore, Cristian Loretelli, Alessandro Valderrama-Vasquez, Vera Usuelli, Emma Assi, Chiara Mameli, Maddalena Macedoni, Anna Maestroni, Antonio Rossi, Maria Elena Lunati, Paola Silvia Morpurgo, Alessandra Gandolfi, Laura Montefusco, Andrea Mario Bolla, Moufida Ben Nasr, Stefania Di Maggio, Lisa Melzi, Giovanni Staurenghi, Antonio Secchi, Stefania Bianchi Marzoli, Gianvincenzo Zuccotti, Paolo Fiorina

Abstract

Aims: Abnormalities in the oculomotor system may represent an early sign of diabetic neuropathy and are currently poorly studied. We designed an eye-tracking-based test to evaluate oculomotor function in patients with type 1 diabetes.

Methods: We used the SRLab-Tobii TX300 Eye tracker®, an eye-tracking device, coupled with software that we developed to test abnormalities in the oculomotor system. The software consists of a series of eye-tracking tasks divided into 4 classes of parameters (Resistance, Wideness, Pursuit and Velocity) to evaluate both smooth and saccadic movement in different directions. We analyzed the oculomotor system in 34 healthy volunteers and in 34 patients with long-standing type 1 diabetes.

Results: Among the 474 parameters analyzed with the eye-tracking-based system, 11% were significantly altered in patients with type 1 diabetes (p < 0.05), with a higher proportion of abnormalities observed in the Wideness (24%) and Resistance (10%) parameters. Patients with type 1 diabetes without diabetic neuropathy showed more frequently anomalous measurements in the Resistance class (p = 0.02). The classes of Velocity and Pursuit were less frequently altered in patients with type 1 diabetes as compared to healthy subjects, with anomalous measurements mainly observed in patients with diabetic neuropathy.

Conclusions: Abnormalities in oculomotor system function can be detected in patients with type 1 diabetes using a novel eye-tracking-based test. A larger cohort study may further determine thresholds of normality and validate whether eye-tracking can be used to non-invasively characterize early signs of diabetic neuropathy.

Trial: NCT04608890.

Keywords: Diabetic neuropathy; Eye movement tracking; Oculomotor system; Type 1 diabetes.

Conflict of interest statement

The authors have nothing to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Cumulative distributions of all parameters analyzed using the eye-tracking-based test in healthy subjects and T1D patients with/without neuropathy. a Eye-tracking-based test and procedure. b Bar graphs depicting percentage of parameters analyzed in each class (Wideness, Resistance, Pursuit and Velocity) based on the statistically significant difference observed comparing CTRL versus T1D patients. White bars: % of parameters not altered (p > 0.05) when comparing T1D versus CTRL. Black bars: % of parameters altered when comparing T1D vs. CTRL (p < 0.05). c Bar graphs representing percentage of parameters altered (n = 50, p < 0.05) in patients with T1D and grouped by presence/absence of diabetic neuropathy. Black bars: % of parameters altered in T1D patients with neuropathy versus T1D patients without neuropathy (p < 0.05). d Summarizing score (1–5) evaluating proportion of altered parameters analyzed in each class (Wideness, Resistance, Pursuit and Velocity) in patients with T1D and grouped by presence/absence of diabetic neuropathy. CTRL, healthy subjects; T1D, patients with type 1 diabetes
Fig. 2
Fig. 2
Cumulative distributions and proportions of all parameters analyzed using the eye-tracking-based test in healthy subjects and T1D patients grouped according to the presence/absence of diabetic neuropathy. a–d Bar graphs depicting number of parameters analyzed in the Wideness (a), Resistance (b), Pursuit (c) and Velocity (d) classes based on the statistically significant difference observed comparing CTRL versus T1D with/without neuropathy. CTRL, healthy subjects; T1D, patients with type 1 diabetes

References

    1. Mizokami-Stout KR, Li Z, Foster NC, et al. The contemporary prevalence of diabetic neuropathy in type 1 diabetes: findings from the T1D exchange. Diabetes Care. 2020;43:806–812. doi: 10.2337/dc19-1583.
    1. Perkins BA. Rethinking neuropathy in type 1 diabetes: had we lost sight of what matters most? Diabetes Care. 2020;43:695–697. doi: 10.2337/dci19-0076.
    1. Vinik AI. Clinical practice: diabetic sensory and motor neuropathy. N Engl J Med. 2016;374:1455–1464. doi: 10.1056/NEJMcp1503948.
    1. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:41. doi: 10.1038/s41572-019-0092-1.
    1. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11:521–534. doi: 10.1016/S1474-4422(12)70065-0.
    1. Selvarajah D, Kar D, Khunti K, et al. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019;7:938–948. doi: 10.1016/S2213-8587(19)30081-6.
    1. Jaiswal M, Divers J, Dabelea D, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for diabetes in youth study. Diabetes Care. 2017;40:1226–1232. doi: 10.2337/dc17-0179.
    1. Tesfaye S, Sloan G. Diabetic polyneuropathy: advances in diagnosis and intervention strategies. Eur Endocrinol. 2020;16:15–20. doi: 10.17925/EE.2020.16.1.15.
    1. Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013;42:747–787. doi: 10.1016/j.ecl.2013.06.001.
    1. Vinik AI, Holland MT, Le Beau JM, Liuzzi FJ, Stansberry KB, Colen LB. Diabetic neuropathies. Diabetes Care. 1992;15:1926–1975. doi: 10.2337/diacare.15.12.1926.
    1. Veresiu AI, Bondor CI, Florea B, Vinik EJ, Vinik AI, Gavan NA. Detection of undisclosed neuropathy and assessment of its impact on quality of life: a survey in 25,000 Romanian patients with diabetes. J Diabetes Complicat. 2015;29:644–649. doi: 10.1016/j.jdiacomp.2015.04.001.
    1. Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American diabetes association. Diabetes Care. 2017;40:136–154. doi: 10.2337/dc16-2042.
    1. Louraki M, Karayianni C, Kanaka-Gantenbein C, Katsalouli M, Karavanaki K. Peripheral neuropathy in children with type 1 diabetes. Diabetes Metab. 2012;38:281–289. doi: 10.1016/j.diabet.2012.02.006.
    1. Breiner A, Lovblom LE, Perkins BA, Bril V. Does the prevailing hypothesis that small-fiber dysfunction precedes large-fiber dysfunction apply to type 1 diabetic patients? Diabetes Care. 2014;37:1418–1424. doi: 10.2337/dc13-2005.
    1. Buttner-Ennever JA. Anatomy of the oculomotor system. Dev Ophthalmol. 2007;40:1–14. doi: 10.1159/000100345.
    1. Virtaniemi J, Laakso M, Nuutinen J, Karjalainen S, Vartiainen E. Voluntary eye movement tests in patients with insulin-dependent diabetes mellitus. Acta Otolaryngol. 1993;113:123–127. doi: 10.3109/00016489309135779.
    1. Gawron W, Pospiech L, Orendorz-Fraczkowska K, Noczynska A. Are there any disturbances in vestibular organ of children and young adults with Type I diabetes? Diabetologia. 2002;45:728–734. doi: 10.1007/s00125-002-0813-x.
    1. Bueno APA, Sato JR, Hornberger M. Eye tracking: the overlooked method to measure cognition in neurodegeneration? Neuropsychologia. 2019;133:107191. doi: 10.1016/j.neuropsychologia.2019.107191.
    1. Tao L, Wang Q, Liu D, Wang J, Zhu Z, Feng L. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol Sci. 2020;41:1697–1704. doi: 10.1007/s10072-020-04310-y.
    1. Garcia-Diaz A, Leboran V, Fdez-Vidal XR, Pardo XM. On the relationship between optical variability, visual saliency, and eye fixations: a computational approach. J Vis. 2012;12:17. doi: 10.1167/12.6.17.
    1. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–2293. doi: 10.2337/dc10-1303.
    1. Gibaldi A, Vanegas M, Bex PJ, Maiello G. Evaluation of the tobii eyeX eye tracking controller and matlab toolkit for research. Behav Res Methods. 2017;49:923–946. doi: 10.3758/s13428-016-0762-9.
    1. Bonhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 2019;40:153–192. doi: 10.1210/er.2018-00107.
    1. Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: what does the future hold? Diabetologia. 2020;63:891–897. doi: 10.1007/s00125-020-05085-9.
    1. Dewanjee S, Das S, Das AK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol. 2018;833:472–523. doi: 10.1016/j.ejphar.2018.06.034.
    1. Dyck PJ, Albers JW, Andersen H, et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. 2011;27:620–628. doi: 10.1002/dmrr.1226.
    1. Del Carro U, Fiorina P, Amadio S, et al. Evaluation of polyneuropathy markers in type 1 diabetic kidney transplant patients and effects of islet transplantation: neurophysiological and skin biopsy longitudinal analysis. Diabetes Care. 2007;30:3063–3069. doi: 10.2337/dc07-0206.
    1. Lauria G, Devigili G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat Clin Pract Neurol. 2007;3:546–557. doi: 10.1038/ncpneuro0630.
    1. Dyck PJ, Argyros B, Russell JW, et al. Multicenter trial of the proficiency of smart quantitative sensation tests. Muscle Nerve. 2014;49:645–653. doi: 10.1002/mus.23982.
    1. Malik RA. Diabetic neuropathy: a focus on small fibres. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3255.
    1. Sveen KA, Karime B, Jorum E, et al. Small- and large-fiber neuropathy after 40 years of type 1 diabetes: associations with glycemic control and advanced protein glycation: the Oslo Study. Diabetes Care. 2013;36:3712–3717. doi: 10.2337/dc13-0788.
    1. Zhang X, Fang C, Li X, et al. Clinical characteristics and risk factors of diabetic peripheral neuropathy of type 1 diabetes mellitus patients. Diabetes Res Clin Pract. 2017;129:97–104. doi: 10.1016/j.diabres.2017.04.016.
    1. D'Addio F, La Rosa S, Maestroni A, et al. Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy. Cell Stem Cell. 2015;17:486–498. doi: 10.1016/j.stem.2015.07.010.
    1. D'Addio F, Trevisani A, Ben Nasr M, et al. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol. 2014;51:897–904. doi: 10.1007/s00592-014-0603-1.
    1. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–1039. doi: 10.1681/ASN.2016060666.
    1. Rojas DR, Kuner R, Agarwal N. Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J Mol Med (Berl) 2019;97:845–854. doi: 10.1007/s00109-019-01781-1.
    1. Venturini M, Fiorina P, Maffi P, et al. Early increase of retinal arterial and venous blood flow velocities at color Doppler imaging in brittle type 1 diabetes after islet transplant alone. Transplantation. 2006;81:1274–1277. doi: 10.1097/01.tp.0000208631.63235.6a.
    1. Grillini A, Renken RJ, Vrijling ACL, Heutink J, Cornelissen FW. Eye movement evaluation in multiple sclerosis and Parkinson's disease using a standardized oculomotor and neuro-ophthalmic disorder assessment (SONDA) Front Neurol. 2020;11:971. doi: 10.3389/fneur.2020.00971.
    1. Soans RS, Grillini A, Saxena R, Renken RJ, Gandhi TK, Cornelissen FW. Eye-movement-based assessment of the perceptual consequences of glaucomatous and neuro-ophthalmological visual field defects. Transl Vis Sci Technol. 2021;10:1. doi: 10.1167/tvst.10.2.1.
    1. de Boer C, van der Steen J, Mattace-Raso F, Boon AJ, Pel JJ. The effect of neurodegeneration on visuomotor behavior in Alzheimer's disease and Parkinson's disease. Mot Control. 2016;20:1–20. doi: 10.1123/mc.2014-0015.
    1. D'Addio F, Maffi P, Vezzulli P, et al. Islet transplantation stabilizes hemostatic abnormalities and cerebral metabolism in individuals with type 1 diabetes. Diabetes Care. 2014;37:267–276. doi: 10.2337/dc13-1663.
    1. Avendano-Valencia LD, Yderstraede KB, Nadimi ES, Blanes-Vidal V. Video-based eye tracking performance for computer-assisted diagnostic support of diabetic neuropathy. Artif Intell Med. 2021;114:102050. doi: 10.1016/j.artmed.2021.102050.

Source: PubMed

3
Sottoscrivi