Consumption of Caffeinated Products and Cardiac Ectopy

Shalini Dixit, Phyllis K Stein, Thomas A Dewland, Jonathan W Dukes, Eric Vittinghoff, Susan R Heckbert, Gregory M Marcus, Shalini Dixit, Phyllis K Stein, Thomas A Dewland, Jonathan W Dukes, Eric Vittinghoff, Susan R Heckbert, Gregory M Marcus

Abstract

Background: Premature cardiac contractions are associated with increased morbidity and mortality. Though experts associate premature atrial contractions (PACs) and premature ventricular contractions (PVCs) with caffeine, there are no data to support this relationship in the general population. As certain caffeinated products may have cardiovascular benefits, recommendations against them may be detrimental.

Methods and results: We studied Cardiovascular Health Study participants with a baseline food frequency assessment, 24-hour ambulatory electrocardiography (Holter) monitoring, and without persistent atrial fibrillation. Frequencies of habitual coffee, tea, and chocolate consumption were assessed using a picture-sort food frequency survey. The main outcomes were PACs/h and PVCs/hour. Among 1388 participants (46% male, mean age 72 years), 840 (61%) consumed ≥1 caffeinated product per day. The median numbers of PACs and PVCs/h and interquartile ranges were 3 (1-12) and 1 (0-7), respectively. There were no differences in the number of PACs or PVCs/h across levels of coffee, tea, and chocolate consumption. After adjustment for potential confounders, more frequent consumption of these products was not associated with ectopy. In examining combined dietary intake of coffee, tea, and chocolate as a continuous measure, no relationships were observed after multivariable adjustment: 0.48% fewer PACs/h (95% CI -4.60 to 3.64) and 2.87% fewer PVCs/h (95% CI -8.18 to 2.43) per 1-serving/week increase in consumption.

Conclusions: In the largest study to evaluate dietary patterns and quantify cardiac ectopy using 24-hour Holter monitoring, we found no relationship between chronic consumption of caffeinated products and ectopy.

Keywords: arrhythmia; diet; electrophysiology; epidemiology.

© 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Estimated percent increase in cardiac ectopy for a serving per week increase in coffee, tea, or chocolate consumption. The unadjusted (white square) and adjusted (black square) estimates shown are after adjustment for clinic site, age, sex, race, income, education level, body mass index, dietary caloric intake, smoking status, number of alcoholic drinks per week, diabetes, hypertension, coronary artery disease, atrial fibrillation, congestive heart failure, and use of β‐blockers, calcium channel blockers, digoxin, class I antiarrhythmics, and class III antiarrhythmics. Y error bars denote 95% CIs. PAC indicates premature atrial contraction; PVC, premature ventricular contraction; SVT, number of runs of supraventricular tachycardia; VT, number of runs of ventricular tachycardia.

References

    1. Manolio TA, Furberg CD, Rautaharju PM, Siscovick D, Newman AB, Borhani NO, Gardin JM, Tabatznik B. Cardiac arrhythmias on 24‐h ambulatory electrocardiography in older women and men: the Cardiovascular Health Study. J Am Coll Cardiol. 1994;23:916–925.
    1. Simpson RJ Jr, Cascio WE, Schreiner PJ, Crow RS, Rautaharju PM, Heiss G. Prevalence of premature ventricular contractions in a population of African American and white men and women: the Atherosclerosis Risk in Communities (ARIC) study. Am Heart J. 2002;143:535–540.
    1. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–666.
    1. Dewland TA, Vittinghoff E, Mandyam MC, Heckbert SR, Siscovick DS, Stein PK, Psaty BM, Sotoodehnia N, Gottdiener JS, Marcus GM. Atrial ectopy as a predictor of incident atrial fibrillation: a cohort study. Ann Intern Med. 2013;159:721–728.
    1. Binici Z, Intzilakis T, Nielsen OW, Kober L, Sajadieh A. Excessive supraventricular ectopic activity and increased risk of atrial fibrillation and stroke. Circulation. 2010;121:1904–1911.
    1. Massing MW, Simpson RJ Jr, Rautaharju PM, Schreiner PJ, Crow R, Heiss G. Usefulness of ventricular premature complexes to predict coronary heart disease events and mortality (from the Atherosclerosis Risk In Communities cohort). Am J Cardiol. 2006;98:1609–1612.
    1. Agarwal SK, Simpson RJ Jr, Rautaharju P, Alonso A, Shahar E, Massing M, Saba S, Heiss G. Relation of ventricular premature complexes to heart failure (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol. 2012;109:105–109.
    1. Dukes JW, Dewland TA, Vittinghoff E, Mandyam MC, Heckbert SR, Siscovick DS, Stein PK, Psaty BM, Sotoodehnia N, Gottdiener JS, Marcus GM. Ventricular ectopy as a predictor of heart failure and death. J Am Coll Cardiol. 2015;66:101–109.
    1. Bogun F, Crawford T, Reich S, Koelling TM, Armstrong W, Good E, Jongnarangsin K, Marine JE, Chugh A, Pelosi F, Oral H, Morady F. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm. 2007;4:863–867.
    1. Chen T, Koene R, Benditt DG, Lu F. Ventricular ectopy in patients with left ventricular dysfunction: should it be treated? J Cardiac Fail. 2013;19:40–49.
    1. DeBacker G, Jacobs D, Prineas R, Crow R, Vilandre J, Kennedy H, Blackburn H. Ventricular premature contractions: a randomized non‐drug intervention trial in normal men. Circulation. 1979;59:762–769.
    1. Blomstrom‐Lundqvist C, Scheinman MM, Aliot EM, Alpert JS, Calkins H, Camm AJ, Campbell WB, Haines DE, Kuck KH, Lerman BB, Miller DD, Shaeffer CW Jr, Stevenson WG, Tomaselli GF, Antman EM, Smith SC Jr, Faxon DP, Fuster V, Gibbons RJ, Gregoratos G, Hiratzka LF, Hunt SA, Jacobs AK, Russell RO Jr, Priori SG, Blanc JJ, Budaj A, Burgos EF, Cowie M, Deckers JW, Garcia MA, Klein WW, Lekakis J, Lindahl B, Mazzotta G, Morais JC, Oto A, Smiseth O, Trappe HJ. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias–executive summary. A report of the American College of Cardiology/American Heart Association task force on practice guidelines and the European Society of Cardiology committee for practice guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE‐Heart Rhythm Society. J Am Coll Cardiol. 2003;42:1493–1531.
    1. Ventricular Premature Beats. UpToDate. Available at: . Accessed November 10, 2014.
    1. Ventricular Premature Complexes Treatment & Management. Medscape. Available at: . Accessed November 10, 2014.
    1. Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med. 1978;298:181–186.
    1. Silletta MG, Marfisi R, Levantesi G, Boccanelli A, Chieffo C, Franzosi M, Geraci E, Maggioni AP, Nicolosi G, Schweiger C, Tavazzi L, Tognoni G, Marchioli R. Coffee consumption and risk of cardiovascular events after acute myocardial infarction: results from the GISSI (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico)‐Prevenzione trial. Circulation. 2007;116:2944–2951.
    1. Graboys TB, Blatt CM, Lown B. The effect of caffeine on ventricular ectopic activity in patients with malignant ventricular arrhythmia. Arch Intern Med. 1989;149:637–639.
    1. Chelsky LB, Cutler JE, Griffith K, Kron J, McClelland JH, McAnulty JH. Caffeine and ventricular arrhythmias. An electrophysiological approach. JAMA. 1990;264:2236–2240.
    1. Lemery R, Pecarskie A, Bernick J, Williams K, Wells GA. A prospective placebo controlled randomized study of caffeine in patients with supraventricular tachycardia undergoing electrophysiologic testing. J Cardiovasc Electrophysiol. 2015;26:1–6.
    1. O'Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all‐cause mortality. J Am Coll Cardiol. 2013;62:1043–1051.
    1. Djousse L, Hopkins PN, North KE, Pankow JS, Arnett DK, Ellison RC. Chocolate consumption is inversely associated with prevalent coronary heart disease: the National Heart, Lung, and Blood Institute Family Heart Study. Clin Nutr. 2011;30:182–187.
    1. de Koning Gans JM, Uiterwaal CS, van der Schouw YT, Boer JM, Grobbee DE, Verschuren WM, Beulens JW. Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler Thromb Vasc Biol. 2010;30:1665–1671.
    1. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A, O'Leary DH, Psaty B, Rautaharju P, Tracy RP, Weiler PG. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991;1:263–276.
    1. Ives DG, Fitzpatrick AL, Bild DE, Psaty BM, Kuller LH, Crowley PM, Cruise RG, Theroux S. Surveillance and ascertainment of cardiovascular events. The Cardiovascular Health Study. Ann Epidemiol. 1995;5:278–285.
    1. Psaty BM, Kuller LH, Bild D, Burke GL, Kittner SJ, Mittelmark M, Price TR, Rautaharju PM, Robbins J. Methods of assessing prevalent cardiovascular disease in the Cardiovascular Health Study. Ann Epidemiol. 1995;5:270–277.
    1. Kumanyika SK, Tell GS, Shemanski L, Martel J, Chinchilli VM. Dietary assessment using a picture‐sort approach. Am J Clin Nutr. 1997;65:1123S–1129S.
    1. Kumanyika S, Tell GS, Fried L, Martel JK, Chinchilli VM. Picture‐sort method for administering a food frequency questionnaire to older adults. J Am Diet Assoc. 1996;96:137–144.
    1. Kumanyika S, Tell GS, Shemanski L, Polak J, Savage PJ. Eating patterns of community‐dwelling older adults: the Cardiovascular Health Study. Ann Epidemiol. 1994;4:404–415.
    1. Mozaffarian D, Psaty BM, Rimm EB, Lemaitre RN, Burke GL, Lyles MF, Lefkowitz D, Siscovick DS. Fish intake and risk of incident atrial fibrillation. Circulation. 2004;110:368–373.
    1. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the Cardiovascular Health Study. Circulation. 2008;118:800–807.
    1. Newcombe PF, Renton KW, Rautaharju PM, Spencer CA, Montague TJ. High‐dose caffeine and cardiac rate and rhythm in normal subjects. Chest. 1988;94:90–94.
    1. Klatsky AL, Hasan AS, Armstrong MA, Udaltsova N, Morton C. Coffee, caffeine, and risk of hospitalization for arrhythmias. Perm J. 2011;15:19–25.
    1. Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ. Beverage caffeine intakes in the U.S. Food Chem Toxicol. 2014;63:136–142.
    1. Lopez‐Garcia E, van Dam RM, Li TY, Rodriguez‐Artalejo F, Hu FB. The relationship of coffee consumption with mortality. Ann Intern Med. 2008;148:904–914.
    1. Wu JN, Ho SC, Zhou C, Ling WH, Chen WQ, Wang CL, Chen YM. Coffee consumption and risk of coronary heart diseases: a meta‐analysis of 21 prospective cohort studies. Int J Cardiol. 2009;137:216–225.
    1. Baylin A, Hernandez‐Diaz S, Kabagambe EK, Siles X, Campos H. Transient exposure to coffee as a trigger of a first nonfatal myocardial infarction. Epidemiology. 2006;17:506–511.
    1. Fisher ND, Hughes M, Gerhard‐Herman M, Hollenberg NK. Flavanol‐rich cocoa induces nitric‐oxide‐dependent vasodilation in healthy humans. J Hypertens. 2003;21:2281–2286.
    1. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short‐term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005;81:611–614.
    1. Taubert D, Berkels R, Roesen R, Klaus W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003;290:1029–1030.
    1. Rienstra M, Vermond RA, Crijns HJ, Tijssen JG, Van Gelder IC, Investigators R. Asymptomatic persistent atrial fibrillation and outcome: results of the RACE study. Heart Rhythm. 2014;11:939–945.
    1. Flaker GC, Belew K, Beckman K, Vidaillet H, Kron J, Safford R, Mickel M, Barrell P. Asymptomatic atrial fibrillation: demographic features and prognostic information from the Atrial Fibrillation Follow‐up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2005;149:657–663.
    1. Yokokawa M, Kim HM, Good E, Chugh A, Pelosi F, Alguire C, Armstrong W, Crawford T, Jongnarangsin K, Oral H, Morady F, Bogun F. Relation of symptoms and symptom duration to premature ventricular complex‐induced cardiomyopathy. Heart Rhythm. 2012;9:92–95.

Source: PubMed

3
Sottoscrivi