Acceleration of tooth movement during orthodontic treatment--a frontier in orthodontics

Ghada Nimeri, Chung H Kau, Nadia S Abou-Kheir, Rachel Corona, Ghada Nimeri, Chung H Kau, Nadia S Abou-Kheir, Rachel Corona

Abstract

Nowadays, there is an increased tendency for researches to focus on accelerating methods for tooth movement due to the huge demand for adults for a shorter orthodontic treatment time. Unfortunately, long orthodontic treatment time poses several disadvantages like higher predisposition to caries, gingival recession, and root resorption. This increases the demand to find the best method to increase tooth movement with the least possible disadvantages. The purpose of this study is to view the successful approaches in tooth movement and to highlight the newest technique in tooth movement. A total of 74 articles were reviewed in tooth movement and related discipline from 1959 to 2013. There is a high amount of researches done on the biological method for tooth movement; unfortunately, the majority of them were done on animals. Cytokine, PTH, vitamin D, and RANKL/RANK/OPG show promising results; on the other hand, relaxin does not accelerate tooth movement, but increases the tooth mobility. Low-level laser therapy has shown positive outcome, but further investigation should be done for the best energy and duration to achieve the highest success rate. Surgical approach has the most predictable outcomes but with limited application due to its aggressiveness. Piezocision technique is considered one of the best surgical approaches because it poses good periodontal tissue response and excellent aesthetic outcome. Due to the advantages and disadvantages of each approach, further investigations should be done to determine the best method to accelerate tooth movement.

References

    1. Davidovitch Z. Tooth movement. Crit Rev Oral Biol Med. 1991;2(4):411–50.
    1. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006;28(3):221–40. doi: 10.1093/ejo/cjl001.
    1. Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am. 1988;32(3):411–35.
    1. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006;129(4):469. doi: 10.1016/j.ajodo.2005.10.007.
    1. Burstone CJ, Tanne K. Biomechanical basis of tooth movement. Nippon Kyosei Shika Gakkai Zasshi. 1986;45(4):541–51.
    1. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115(5):355–62. doi: 10.1111/j.1600-0722.2007.00469.x.
    1. Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop. 1995;108(4):380–8. doi: 10.1016/S0889-5406(95)70035-8.
    1. Krishnan V, Davidovitch Z. The effect of drugs on orthodontic tooth movement. Orthod Craniofac Res. 2006;9(4):163–71. doi: 10.1111/j.1601-6343.2006.00372.x.
    1. Saito M, Saito S, Ngan PW, Shanfeld J, Davidovitch Z. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofacial Orthop. 1991;99(3):226–40. doi: 10.1016/0889-5406(91)70005-H.
    1. Yamasaki K, Miura F, Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res. 1980;59(10):1635–42. doi: 10.1177/00220345800590101301.
    1. Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata) J Dent Res. 1982;61(12):1444–6. doi: 10.1177/00220345820610121401.
    1. Yamasaki K, Shibata Y, Imai S, Tani Y, Shibasaki Y, Fukuhara T. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod. 1984;85(6):508–18. doi: 10.1016/0002-9416(84)90091-5.
    1. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003;25(2):199–204. doi: 10.1093/ejo/25.2.199.
    1. Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther. 2006;13(8):678–85. doi: 10.1038/sj.gt.3302707.
    1. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res. 2006;9(2):63–70. doi: 10.1111/j.1601-6343.2006.00340.x.
    1. Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1988;94(4):278–84. doi: 10.1016/0889-5406(88)90052-2.
    1. Kale S, Kocadereli I, Atilla P, Asan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125(5):607–14. doi: 10.1016/j.ajodo.2003.06.002.
    1. Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res. 1999;14(4):546–54. doi: 10.1359/jbmr.1999.14.4.546.
    1. Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, Iwamoto M. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000;79(9):1717–24. doi: 10.1177/00220345000790091301.
    1. Liu ZJ, King GJ, Gu GM, Shin JY, Stewart DR. Does human relaxin accelerate orthodontic tooth movement in rats? Ann N Y Acad Sci. 2005;1041:388–94. doi: 10.1196/annals.1282.059.
    1. Madan MS, Liu ZJ, Gu GM, King GJ. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131(1):8. doi: 10.1016/j.ajodo.2006.06.014.
    1. McGorray SP, Dolce C, Kramer S, Stewart D, Wheeler TT. A randomized, placebo-controlled clinical trial on the effects of recombinant human relaxin on tooth movement and short-term stability. Am J Orthod Dentofacial Orthop. 2012;141(2):196–203. doi: 10.1016/j.ajodo.2011.07.024.
    1. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone. 1999;25(5):517–23. doi: 10.1016/S8756-3282(99)00210-0.
    1. Drugarin DDM, Negru S, Cioace R. RANKL/RANK/OPG molecular complex- control factors in bone remodeling. TMJ. 2003;53:296–302.
    1. Kim SJ, Kang YG, Park JH, Kim EC, Park YG. Effects of low-intensity laser therapy on periodontal tissue remodeling during relapse and retention of orthodontically moved teeth. Lasers Med Sci. 2013;28(1):325–33. doi: 10.1007/s10103-012-1146-8.
    1. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19. doi: 10.1016/S0092-8674(00)80209-3.
    1. Oshiro T, Shiotani A, Shibasaki Y, Sasaki T. Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec. 2002;266(4):218–25. doi: 10.1002/ar.10061.
    1. Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. 2004;83(12):920–5. doi: 10.1177/154405910408301206.
    1. Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res. 2009;12(2):113–9. doi: 10.1111/j.1601-6343.2009.01444.x.
    1. Takano-Yamamoto T, Rodan GA. A model for investigating the local action of bone-acting agents in vivo: effects of hPTH(1–34) on the secondary spongiosa in the rat. Calcif Tissue Int. 1990;47(3):158–63. doi: 10.1007/BF02555981.
    1. Nicozisis JL, Nah-Cederquist HD, Tuncay OC. Relaxin affects the dentofacial sutural tissues. Clin Orthod Res. 2000;3(4):192–201. doi: 10.1034/j.1600-0544.2000.030405.x.
    1. Han GL, He H, Hua XM, Wang SZ, Zeng XL. Expression of cathepsin K and IL-6 mRNA in root-resorbing tissue during tooth movement in rats. Zhonghua Kou Qiang Yi Xue Za Zhi. 2004;39(4):320–3.
    1. Bumann A, Carvalho RS, Schwarzer CL, Yen EH. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod. 1997;19(1):29–37. doi: 10.1093/ejo/19.1.29.
    1. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;129(4):458–68. doi: 10.1016/j.ajodo.2005.12.013.
    1. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, Mitani H. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2008;133(4):572–83. doi: 10.1016/j.ajodo.2006.01.046.
    1. Kau CH. A radiographic analysis of tooth morphology following the use of a novel cyclical force device in orthodontics. Head Face Med. 2011;7:14. doi: 10.1186/1746-160X-7-14.
    1. Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod. 1980;77(1):33–47. doi: 10.1016/0002-9416(80)90222-5.
    1. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11(3):143–55. doi: 10.1111/j.1601-6343.2008.00423.x.
    1. Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26(3):282–91. doi: 10.1002/(SICI)1096-9101(2000)26:3<282::AID-LSM6>;2-X.
    1. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res. 2006;9(1):38–43. doi: 10.1111/j.1601-6343.2006.00338.x.
    1. Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, da la-Fuente A, et al. Prog Orthod. 2013. Extra-oral photobiomodulation in the alignment phase of orthodontics.
    1. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289–97. doi: 10.1016/j.ajodo.2011.09.009.
    1. Zengo AN, Bassett CA, Pawluk RJ, Prountzos G. In vivo bioelectric petentials in the dentoalveolar complex. Am J Orthod. 1974;66(2):130–9. doi: 10.1016/0002-9416(74)90232-2.
    1. Shimizu Y. Movement of the lateral incisors in Macaca fuscata as loaded by a vibrating force. Nippon Kyosei Shika Gakkai Zasshi. 1986;45(1):56–72.
    1. Kakehi N, Yamazaki T, Tsugawa W, Sode K. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Biosens Bioelectron. 2007;22(9–10):2250–5. doi: 10.1016/j.bios.2006.11.004.
    1. Kolahi J, Abrishami M, Davidovitch Z. Microfabricated biocatalytic fuel cells: a new approach to accelerating the orthodontic tooth movement. Med Hypotheses. 2009;73(3):340–1. doi: 10.1016/j.mehy.2009.03.041.
    1. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997;111(5):525–32. doi: 10.1016/S0889-5406(97)70152-5.
    1. Trelles MA, Mayayo E. Bone fracture consolidates faster with low-power laser. Lasers Surg Med. 1987;7(1):36–45. doi: 10.1002/lsm.1900070107.
    1. Takeda Y. Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Experimental study in rats. Int J Oral Maxillofac Surg. 1988;17(6):388–91. doi: 10.1016/S0901-5027(88)80070-5.
    1. Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84(5):1091–9. doi: 10.1111/j.1751-1097.2008.00394.x.
    1. Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci USA. 2003;100(6):3439–44. doi: 10.1073/pnas.0534746100.
    1. Liou EJ, Huang CS. Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofacial Orthop. 1998;114(4):372–82. doi: 10.1016/S0889-5406(98)70181-7.
    1. Ren A, Lv T, Kang N, Zhao B, Chen Y, Bai D. Rapid orthodontic tooth movement aided by alveolar surgery in beagles. Am J Orthod Dentofacial Orthop. 2007;131(2):160. doi: 10.1016/j.ajodo.2006.05.029.
    1. Sukurica Y, Karaman A, Gurel HG, Dolanmaz D. Rapid canine distalization through segmental alveolar distraction osteogenesis. Angle Orthod. 2007;77(2):226–36. doi: 10.2319/0003-3219(2007)077[0226:RCDTSA];2.
    1. Kisnisci RS, Iseri H, Tuz HH, Altug AT. Dentoalveolar distraction osteogenesis for rapid orthodontic canine retraction. J Oral Maxillofac Surg. 2002;60(4):389–94. doi: 10.1053/joms.2002.31226.
    1. Iseri H, Kisnisci R, Bzizi N, Tuz H. Rapid canine retraction and orthodontic treatment with dentoalveolar distraction osteogenesis. Am J Orthod Dentofacial Orthop. 2005;127(5):533–41. doi: 10.1016/j.ajodo.2004.01.022.
    1. Sayin S, Bengi AO, Gurton AU, Ortakoglu K. Rapid canine distalization using distraction of the periodontal ligament: a preliminary clinical validation of the original technique. Angle Orthod. 2004;74(3):304–15.
    1. Lee W, Karapetyan G, Moats R, Yamashita DD, Moon HB, Ferguson DJ, Yen S. Corticotomy-/osteotomy-assisted tooth movement microCTs differ. J Dent Res. 2008;87(9):861–7. doi: 10.1177/154405910808700904.
    1. Wilcko WM, Wilcko T, Bouquot JE, Ferguson DJ. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent. 2001;21(1):9–19.
    1. Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van-Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop. 2011;139(4 Suppl):S83–101. doi: 10.1016/j.ajodo.2010.09.026.
    1. Aboul-Ela SM, El-Beialy AR, El-Sayed KM, Selim EM, El-Mangoury NH, Mostafa YA. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitated orthodontics. Am J Orthod Dentofacial Orthop. 2011;139(2):252–9. doi: 10.1016/j.ajodo.2009.04.028.
    1. Han XL, Meng Y, Kang N, Lv T, Bai D. Expression of osteocalcin during surgically assisted rapid orthodontic tooth movement in beagle dogs. J Oral Maxillofac Surg. 2008;66(12):2467–75. doi: 10.1016/j.joms.2008.06.087.
    1. Dibart S, Surmenian J, Sebaoun JD, Montesani L. Rapid treatment of Class II malocclusion with piezocision: two case reports. Int J Periodontics Restorative Dent. 2010;30(5):487–93.
    1. Hassan NHANE, Sa IT. The effect of using piezocision technique in orthodontic tooth movement on the periodontal condition. Egypt Dent J. 2011;57:3047.
    1. Keser EI, Dibart S. Piezocision-assisted Invisalign treatment. Compend Contin Educ Dent. 2011;32(2):46–8.
    1. Ilizarov GA. The possibilities offered by our method for lengthening various segments in upper and lower limbs. Basic Life Sci. 1988;48:323–4.
    1. Wang L, Lee W, Lei DL, Liu YP, Yamashita DD, Yen SL. Tisssue responses in corticotomy- and osteotomy-assisted tooth movements in rats: histology and immunostaining. Am J Orthod Dentofacial Orthop. 2009;136(6):770. doi: 10.1016/j.ajodo.2009.07.010.
    1. Kole H. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol. 1959;12(5):515–29. doi: 10.1016/0030-4220(59)90153-7.
    1. Generson RM, Porter JM, Zell A, Stratigos GT. Combined surgical and orthodontic management of anterior open bite using corticotomy. J Oral Surg. 1978;36(3):216–9.
    1. Anholm JM, Crites DA, Hoff R, Rathbun WE. Corticotomy-facilitated orthodontics. CDA J. 1986;14(12):7–11.
    1. Gantes B, Rathbun E, Anholm M. Effects on the periodontium following corticotomy-facilitated orthodontics. Case reports. J Periodontol. 1990;61(4):234–8. doi: 10.1902/jop.1990.61.4.234.
    1. Suya H. Corticotomy in orthodontics. In: Hosl E, Baldauf A, editors. Mechanical and biological basis in orthodontic therapy. Heidelberg, Germany: Huthig Buch Verlag; 1991. pp. 207–26.
    1. Nazarov AD, Ferguson D, Wilcko WM, Wilcko MT. Improved retention following corticotomy using ABO objective grading system. J Dent Res. 2004;83:2644.
    1. Mittal SKS, Singla A. Piezocision assisted orthodontics: a new approach to accelerated orthodontic tooth movement. Innovative Dentistry. 2011;1:1.

Source: PubMed

3
Sottoscrivi