Pitfalls of assessment of autonomic function by heart rate variability

Junichiro Hayano, Emi Yuda, Junichiro Hayano, Emi Yuda

Abstract

Although analysis of heart rate variability is widely used for the assessment of autonomic function, its fundamental framework linking low-frequency and high-frequency components of heart rate variability with sympathetic and parasympathetic autonomic divisions has developed in the 1980s. This simplified framework is no longer able to deal with much evidence about heart rate variability accumulated over the past half-century. This review addresses the pitfalls caused by the old framework and discusses the points that need attention in autonomic assessment by heart rate variability.

Keywords: Autonomic nervous system; Cardiorespiratory coupling; Heart rate variability; Respiratory sinus arrhythmia; Spectral analysis.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Association between LF/HF and lying ratio during 24-h monitoring in 18,944 men and 23,539 women who underwent 24-h Holter ECG monitoring with tri-axial accelerogram to assess physical activity and body position. Data were obtained from 24-h long-term HRV database of the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) project. (Revised figure in reference [31])
Fig. 2
Fig. 2
Schema of the effects of physiological RSA and its inversion (inverse RSA) on the relationship between alveolar gas volume and capillary blood flow during inspiration and expiration. Horizontal red bows and vertical green arrows indicate the volume of blood flow and the direction of gas flow, respectively. Physiological RSA improves respiratory gas exchange efficiency through matching between alveolar ventilation and capillary perfusion throughout the respiratory cycle, while the inversion of the relationship (inverse RSA) results in increased alveolar dead space (wasted ventilation) and increased intrapulmonary shunt. (Revised figure in reference [61])
Fig. 3
Fig. 3
Model of central regulations RSA and the level of heart rate by preganglionic cardiac vagal motor neurons. RSA is generated by the phasic control system located in the nucleus ambiguous (nA) that regulates the amplitude of respiratory modulation of cardiac vagal outflow, while bradycardia is derived by the tonic control system located in the dorsal motor nucleus of the vagus (DVN) that regulates average cardiac vagal tone. These systems work independently of HRV of each other and are stimulated (solid arrows) or inhibited (broken arrows) by different kinds of inputs. However, both systems appear to work in parallel and to link with each other, whenever the cardiac autonomic state changes along with the rest-strain axis. (Revised figure in reference [61])

References

    1. Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol. 1989;14:1139–1148.
    1. Camm AJ, Malik M, Bigger JT, Jr, Breithardt G, Cerutti S, Cohen RJ, Coumel P, Fallen EL, Kleiger RE, Lombardi F, Malliani A, Moss AJ, Rottman JN, Schmidt G, Schwartz PJ, Singer DH, Task force of the European Society of Cardiology and the north American Society of Pacing and Electrophysiology Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–1065.
    1. Katona PG, Poitras JW, Barnett GO, Terry BS. Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Phys. 1970;218(4):1030–1037.
    1. Hyndman BW, Kitney RI, Sayers BM. Spontaneous rhythms in physiological control systems. Nature. 1971;233:339–341.
    1. Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16(1):17–32.
    1. Hyndman BW, Gregory JR. Spectral analysis of sinus arrhythmia during mental loading. Ergonomics. 1975;18(3):255–270.
    1. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Phys. 1985;248(1 Pt 2):H151–H153.
    1. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–193.
    1. Billman GE. Heart rate variability - a historical perspective. Front Physiol. 2011;2:86.
    1. Berntson GG, Bigger JT, Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, Van der Molen MW. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–648.
    1. Hayano J, Yasuma F. Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 2003;58(1):1–9.
    1. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.
    1. Sands KEF, Appel ML, Lilly LS, Schoen FJ, Mudge GH, Jr, Cohen RJ. Power spectrum analysis of heart rate variability in human cardiac transplant recipients. Circulation. 1989;79:76–82.
    1. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991;67(2):199–204.
    1. Hayano J, Sakakibara Y, Yamada M, Kamiya T, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Diurnal variations in vagal and sympathetic cardiac control. Am J Phys. 1990;258(3 Pt 2):H642–H646.
    1. Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Miyamoto T, Shimizu S, Uemura K, Aiba T, Sunagawa K, Sugimachi M. Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. Am J Phys. 2005;289(6):H2641–H2648.
    1. Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Miyamoto T, Uemura K, Sugimachi M, Sunagawa K. Muscle sympathetic nerve activity averaged over 1 minute parallels renal and cardiac sympathetic nerve activity in response to a forced baroreceptor pressure change. Circulation. 2005;112(3):384–386.
    1. Kleiger RE, Miller JP, Bigger JT, Jr, Moss AJ, the Multicenter Post-Infarction Research G Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–262.
    1. Bigger JT, Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992;85:164–171.
    1. Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M, Grp DS. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101:47–53.
    1. Kiyono K, Hayano J, Watanabe E, Struzik ZR, Yamamoto Y. Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure. Heart Rhythm. 2008;5(2):261–268.
    1. Suzuki M, Hiroshi T, Aoyama T, Tanaka M, Ishii H, Kisohara M, Iizuka N, Murohara T, Hayano J. Nonlinear measures of heart rate variability and mortality risk in hemodialysis patients. Clin J Am Soc Nephrol. 2012;7(9):1454–1460.
    1. Costa MD, Redline S, Davis RB, Heckbert SR, Soliman EZ, Goldberger AL. Heart rate fragmentation as a novel biomarker of adverse cardiovascular events: the multi-ethnic study of atherosclerosis. Front Physiol. 2018;9:1117.
    1. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, Camm AJ, Bigger JT, Jr, Schomig A. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999;353:1390–1396.
    1. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, Hnatkova K, Schomig A, Huikuri H, Bunde A, Malik M, Schmidt G. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006;367(9523):1674–1681.
    1. Hayano J, Yasuma F, Watanabe E, Carney RM, Stein PK, Blumenthal JA, Arsenos P, Gatzoulis KA, Takahashi H, Ishii H, Kiyono K, Yamamoto Y, Yoshida Y, Yuda E, Kodama I. Blunted cyclic variation of heart rate predicts mortality risk in post-myocardial infarction, end-stage renal disease, and chronic heart failure patients. Europace. 2017;19:1392–1400.
    1. Hayano J, Yuda E, Furukawa Y, Yoshida Y. Association of 24-hour heart rate variability and daytime physical activity: ALLSTAR big data analysis. Int J Biosci Biochem Bioinformatics. 2018;8(1):61–67.
    1. Hayano J, Mukai S, Fukuta H, Sakata S, Ohte N, Kimura G. Postural response of low-frequency component of heart rate variability is an increased risk for mortality in patients with coronary artery disease. Chest. 2001;120:1942–1952.
    1. La Rovere MT, Bigger JT, Jr, Marcus FI, Mortara A, Schwartz PJ, Investigators A. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351:478–484.
    1. Yoshida Y, Ogasawara H, Yuda E, Hayano J. What does LF/HF of heart rate variability in ambulatory ECG mean? Effect of time in lying position during monitoring. Eur Heart J. 2016;37(suppl):96-97.
    1. Yoshida Y, Furukawa Y, Ogasawara H, Yuda E, Hayano J, editors. Longer lying position causes lower LF/HF of heart rate variability during ambulatory monitoring. Kyoto: 2016 IEEE 5th Global Conference on Consumer Electronics (GCCE); 2016.
    1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–222.
    1. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am J Phys. 1989;256(1 Pt 2):H142–H152.
    1. Penaz J. Mayer waves: history and methodology. Automedica. 1978;2:135-141.
    1. Madwed JB, Albrecht P, Mark RG, Cohen RJ. Low-frequency oscillation in arterial pressure and heart rate: a simple computer model. Am J Phys. 1991;256:H1573–H15H9.
    1. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21(3):133–141.
    1. Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation. 1990;81(4):1217–1224.
    1. Vaschillo EG, Vaschillo B, Lehrer PM. Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl Psychophysiol Biofeedback. 2006;31(2):129–142.
    1. Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014;5:756.
    1. Woo MA, Stevenson WG, Moser DK, Middlekauff HR. Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. J Am Coll Cardiol. 1994;23:565–569.
    1. Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J. 1992;123:704–710.
    1. Binkley PF, Eaton GM, Nunziata E, Khot U, Cody RJ. Heart rate alternans. Ann Intern Med. 1995;122(2):115–117.
    1. Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol. 2005;16(9):954–959.
    1. Stein PK, Le Q, Domitrovich PP, Investigators C. Development of more erratic heart rate patterns is associated with mortality post-myocardial infarction. J Electrocardiol. 2008;41(2):110–115.
    1. Costa MD, Davis RB, Goldberger AL. Heart rate fragmentation: a symbolic dynamical approach. Front Physiol. 2017;8:827.
    1. Costa MD, Davis RB, Goldberger AL. Heart rate fragmentation: a new approach to the analysis of cardiac interbeat interval dynamics. Front Physiol. 2017;8:255.
    1. Taylor EW. The evolution of efferent vagal control of the heart in vertebrates. Cardioscience. 1994;5(3):173–182.
    1. Taylor EW, Hoar WS, Randall DJ, Farrell AP. Nervous control of the heart and cardiorespiratory interactions. Fish Physiology vol XII B. New York: Academic Press; 1992. pp. 343–387.
    1. Melcher A. Respiratory sinus arrhythmia in man: a study in heart rate regulating mechanisms. Acta Physiol Scand. 1976;Suppl 435:1–31.
    1. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Phys. 1981;241:H620–H6H9.
    1. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol. 1993;75:2310–2317.
    1. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol. 1983;54:961–966.
    1. Kollai M, Mizsei G. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol (Lond) 1990;424:329–342.
    1. Hayano J, Mukai S, Sakakibara M, Okada A, Takata K, Fujinami T. Effects of respiratory interval on vagal modulation of heart rate. Am J Phys. 1994;267(1 Pt 2):H33–H40.
    1. Taylor JA, Myers CW, Halliwill JR, Seidel H, Eckberg DL. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans. Am J Phys. 2001;280:H2804–H2814.
    1. Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol. 2002;542(Pt 3):669–683.
    1. Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev. 1999;79:855–916.
    1. Jones JFX, Wang Y, Jordan D. Activity of C-fiber cardiac vagal efferents in anaesthetized cats and rats. J Physiol (Lond) 1998;507:869–880.
    1. Windle WF. Neurofibrillar development in the central nervous system of cat embryos between 8 and 12 mm long. J Comp Neurol. 1933;58:643–723.
    1. Taylor EW, Al-Ghamdi MS, Ihmied IH, Wang T, Abe AS. The neuranatomical basis of central control of cardiorespiratory interactions in vertebrates. Exp Physiol. 2001;86(6):771–776.
    1. Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94(4):842–847.
    1. Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125(2):683–690.
    1. Ito S, Sasano H, Sasano N, Hayano J, Fisher JA, Katsuya H. Vagal nerve activity contributes to improve the efficiency of pulmonary gas exchange in hypoxic humans. Exp Physiol. 2006;91(5):935–941.
    1. Satchell GH. The reflex co-ordination of the heart beats with respiration in dogfish. J Exp Biol. 1960;37:719–731.
    1. Goldberger JJ, Ahmed MW, Parker MA, Kadish AH. Dissociation of heart rate variability from parasympathetic tone. Am J Phys. 1994;266:H2152–H21H7.
    1. Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH. Relationship of heart rate variability to parasympathetic effect. Circulation. 2001;103(15):1977–1983.
    1. Sakakibara M, Takeuchi S, Hayano J. Effect of relaxation training on cardiac parasympathetic tone. Psychophysiology. 1994;31:223–228.
    1. Bonnet MH, Arand DL. Heart rate variability: sleep stage, time of night, and arousal influences. Electroencephalogr Clin Neurophysiol. 1997;102:390–396.
    1. Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Phys. 1989;256:H132–HH41.
    1. Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol. 1991;71:1136–1142.
    1. Taylor JA, Hayano J, Seals DR. Lesser vagal withdrawal during isometric exercise with age. J Appl Physiol. 1995;79:805–811.
    1. Sakakibara M, Kanematsu T, Yasuma F, Hayano J. Impact of real-world stress on cardiorespiratory resting function during sleep in daily life. Psychophysiology. 2008;45(4):667–670.
    1. Shannon DC, Carley DW, Benson H. Aging of modulation of heart rate. Am J Phys. 1987;253:H874–H8H7.
    1. Saul JP, Arai Y, Berger RD, Lilly LS, Colucci WS, Cohen RJ. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988;61:1292–1299.
    1. Randall DC, Brown DR, Raisch RM, Yingling JD, Randall WC. SA nodal parasympathectomy delineates autonomic control of heart rate power spectrum. Am J Phys. 1991;260(3 Pt 2):H985–H988.
    1. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm. 2007;4(12):1523–1529.

Source: PubMed

3
Sottoscrivi