Leber's Hereditary Optic Neuropathy-Gene Therapy: From Benchtop to Bedside

Rajeshwari D Koilkonda, John Guy, Rajeshwari D Koilkonda, John Guy

Abstract

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disorder caused by point mutations in mitochondrial DNA (mtDNA). Most cases are due to mutations in genes encoding subunits of the NADH-ubiquinone oxidoreductase that is Complex I of the electron transport chain (ETC). These mutations are located at nucleotide positions 3460, 11778, or 14484 in the mitochondrial genome. The disease is characterized by apoplectic, bilateral, and severe visual loss. While the mutated mtDNA impairs generation of ATP by all mitochondria, there is only a selective loss of retinal ganglion cells and degeneration of optic nerve axons. Thus, blindness is typically permanent. Half of the men and 10% of females who harbor the pathogenic mtDNA mutation actually develop the phenotype. This incomplete penetrance and gender bias is not fully understood. Additional mitochondrial and/or nuclear genetic factors may modulate the phenotypic expression of LHON. In a population-based study, the mtDNA background of haplogroup J was associated with an inverse relationship of low-ATP generation and increased production of reactive oxygen species (ROS). Effective therapy for LHON has been elusive. In this paper, we describe the findings of pertinent published studies and discuss the controversies of potential strategies to ameliorate the disease.

Figures

Figure 1
Figure 1
Fundus photographs of a patient with acute LHON revealed swelling of the right (a) and left (b) optic nerve heads. The arrow indicates the characteristic peripapillary telangiectasia. Automated visual fields showed central scotomas in the left (c) and right (d) eyes. OCT confirmed and quantitated the swelling of the retinal nerve fiber layer (e). Pattern electroretinograms illustrated a decline in ganglion cell function occurred during the acute stages of LHON and before structural evidence of RGC loss (f).
Figure 2
Figure 2
A schematic diagram illustrates the interaction of Complex I dysfunction, decreased ATP production, increased ROS, and apoptosis that culminate in the optic nerve degeneration of LHON and LHON cellular and animal models. ATP—adenosine triphosphate; ROS—reactive oxygen species.
Figure 3
Figure 3
Electrophoresis of mitochondrial proteins isolated from the mouse brain following Complex I immunoprecipitation and counterstained by Coomassie blue are shown in the second lane. The first lane has the molecular weight standards. The table indicates the identity of bands submitted for mass spectroscopy to be subunits of Complex I. (*)—subunits identified within the same excised band. (nd)—not determined.

References

    1. Leber T. Ueber hereditaere und congenital angelegte sehnervenleiden. Graefes Arch Ophthalmol. 1871;17:249–291.
    1. Newman NJ. Hereditary optic neuropathies: from the mitochondria to the optic nerve. American Journal of Ophthalmology. 2005;140(3):517.e1–517.e9.
    1. Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic findings in Leber’s hereditary optic neuropathy. II. The fundus findings in the affected family members. Archives of Ophthalmology. 1983;101(7):1059–1068.
    1. Wallace DC. A new manifestation of Leber’s disease and a new explanation for the agency responsible for its unusual pattern of inheritance. Brain. 1970;93(1):121–132.
    1. Erickson RP. Leber’s optic atrophy, a possible example of maternal inheritance. American Journal of Human Genetics. 1972;24(3):348–349.
    1. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–1430.
    1. Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE. The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain. 1995;118(2):319–337.
    1. Chalmers RM, Harding AE. A case-control study of Leber’s hereditary optic neuropathy. Brain. 1996;119(5):1481–1486.
    1. Meire FM, Van Coster R, Cochaux P, Obermaier-Kusser B, Candaele C, Martin JJ. Neurological disorders in members of families with Leber’s hereditary optic neuropathy (LHON) caused by different mitochondrial mutations. Ophthalmic Genetics. 1995;16(3):119–126.
    1. Nikoskelainen EK, Marttila RJ, Huoponen K, et al. Leber’s ’plus’: neurological abnormalities in patients with Leber’s hereditary optic neuropathy. Journal of Neurology Neurosurgery and Psychiatry. 1995;59(2):160–164.
    1. Bower SPC, Hawley I, Mackey DA. Cardiac arrhythmia and Leber’s hereditory optic neuropathy. Lancet. 1992;339(8806):1427–1428.
    1. Mashima Y, Kigasawa K, Hasegawa H, Tani M, Oguchi Y. High incidence of pre-excitation syndrome in Japanese families with Leber’s hereditary optic neuropathy. Clinical Genetics. 1996;50(6):535–537.
    1. Nikoskelainen EK, Savontaus ML, Huoponen K, Antila K, Hartiala J. Pre-excitation syndrome in Leber’s hereditary optic neuropathy. Lancet. 1994;344(8926):857–858.
    1. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Progress in Retinal and Eye Research. 2004;23(1):53–89.
    1. Sadun AA, Win PH, Ross-Cisneros FN, et al. Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Transactions of the American Ophthalmological Society. 2000;98:223–235.
    1. Man PYW, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF. The epidemiology of Leber hereditary optic neuropathy in the North East of England. American Journal of Human Genetics. 2003;72(2):333–339.
    1. Puomila A, Hämäläinen P, Kivioja S, et al. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. European Journal of Human Genetics. 2007;15(10):1079–1089.
    1. Mackey DA, Buttery RG. Leber hereditary optic neuropathy in Australia. Australian and New Zealand Journal of Ophthalmology. 1992;20(3):177–184.
    1. Carroll WM, Mastaglia FL. Leber’s optic neuropathy: a clinical and visual evoked potential study of affected and asymptomatic members of a six generation family. Brain. 1979;102(3):559–580.
    1. Newman NJ. Leber’s hereditary optic neuropathy: new genetic considerations. Archives of Neurology. 1993;50(5):540–548.
    1. Johns DR, Heber KL, Miller NR, Smith KH. Leber’s hereditary optic neuropathy: clinical manifestations of the 14484 mutation. Archives of Ophthalmology. 1993;111(4):495–498.
    1. Palace J. Multiple sclerosis associated with Leber’s Hereditary Optic Neuropathy. Journal of the Neurological Sciences. 2009;286(1-2):24–27.
    1. Murakami T, Mita S, Tokunaga M, et al. Hereditary cerebellar ataxia with Leber’s hereditary optic neuropathy mitochondrial DNA 11778 mutation. Journal of the Neurological Sciences. 1996;142(1-2):111–113.
    1. Gropman A, Chen TJ, Perng CL, et al. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. American Journal of Medical Genetics. 2004;124(4):377–382.
    1. Abu-Amero KK, Bosley TM, Bohlega S, McLean D. Complex I respiratory defect in LHON plus dystonia with no mitochondrial DNA mutation. British Journal of Ophthalmology. 2005;89(10):1380–1381.
    1. Kerrison JB, Miller NR, Hsu FC, et al. A case-control study of tobacco and alcohol consumption in leber hereditary optic neuropathy. American Journal of Ophthalmology. 2000;130(6):803–812.
    1. Newman NJ. Leber hereditary optic neuropathy: bad habits, bad vision. Brain. 2009;132(9):2306–2308.
    1. Kirkman MA, Yu-Wai-Man P, Korsten A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain. 2009;132(9):2317–2326.
    1. Lachmund U, Mojon DS. Leber’s hereditary optic neuropathy in malnutrition: a case report. Klinische Monatsblatter fur Augenheilkunde. 2006;223(5):393–396.
    1. Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, Savontaus ML. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. American Journal of Human Genetics. 1991;48(6):1147–1153.
    1. Howell N, Bindoff LA, McCullough DA, et al. Leber hereditary optic neuropathy: identification of the same mitochondrial NDI mutation in six pedigrees. American Journal of Human Genetics. 1991;49(5):939–950.
    1. Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochemical and Biophysical Research Communications. 1992;187(3):1551–1557.
    1. Mackey DA, Oostra RJ, Rosenberg T, et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. American Journal of Human Genetics. 1996;59(2):481–485.
    1. Mackey D, Howell N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. American Journal of Human Genetics. 1992;51(6):1218–1228.
    1. Huoponen K. Leber hereditary optic neuropathy: clinical and molecular genetic findings. Neurogenetics. 2001;3(3):119–125.
    1. Bu X, Rotter JI. X chromosome-linked and mitochondrial gene control of Leber hereditary optic neuropathy: evidence from segregation analysis for dependence on X chromosome inactivation. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(18):8198–8202.
    1. Brown MD, Sun F, Wallace DC. Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage. American Journal of Human Genetics. 1997;60(2):381–387.
    1. Torroni A, Petrozzi M, D’Urbano L, et al. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. American Journal of Human Genetics. 1997;60(5):1107–1121.
    1. Man PY, Howell N, Mackey DA, et al. Mitochondrial DNA haplogroup distribution within Leber hereditary optic neuropathy pedigrees. Journal of Medical Genetics. 2004;41(4, article e41)
    1. Carelli V, Achilli A, Valentino ML, et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of leber hereditary optic neuropathy pedigrees. American Journal of Human Genetics. 2006;78(4):564–574.
    1. Howell N, Herrnstadt C, Shults C, Mackey DA. Low penetrance of the 14484 LHON mutation when it arises in a non-haplogroup J mtDNA background. American Journal of Medical Genetics. 2003;119(2):147–151.
    1. Vergani L, Martinuzzi A, Carelli V, et al. MtDNA mutations associated with Leber’s hereditary optic neuropathy: studies on cytoplasmic hybrid (cybrid) cells. Biochemical and Biophysical Research Communications. 1995;210(3):880–888.
    1. Carelli V, Vergani L, Bernazzi B, et al. Respiratory function in cybrid cell lines carrying European mtDNA haplogroups: implications for Leber’s hereditary optic neuropathy. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2002;1588(1):7–14.
    1. Pello R, Martín MA, Carelli V, et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Human Molecular Genetics. 2008;17(24):4001–4011.
    1. Ghelli AM, Porcelli AM, Zanna C, et al. The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber’s hereditary optic neuropathy cells to 2,5-hexanedione toxicity. PLoS One. 2009;4(11) Article ID e7922.
    1. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. Journal of Medical Genetics. 2009;46(3):145–158.
    1. Lemire B. Mitochondrial genetics. WormBook. 2005:1–10.
    1. Smith KH, Johns DR, Heher KL, Miller NR. Heteroplasmy in Leber’s hereditary optic neuropathy. Archives of Ophthalmology. 1993;111(11):1486–1490.
    1. Jacobi FK, Leo-Kottler B, Mittelviefhaus K, et al. Segregation patterns and heteroplasmy prevalence in Leber’s hereditary optic neuropathy. Investigative Ophthalmology and Visual Science. 2001;42(6):1208–1214.
    1. Phasukkijwatana N, Chuenkongkaew WL, Suphavilai R, Luangtrakool K, Kunhapan B, Lertrit P. Transmission of heteroplasmic G11778A in extensive pedigrees of Thai Leber hereditary optic neuropathy. Journal of Human Genetics. 2006;51(12):1110–1117.
    1. Phasukkijwatana N, Chuenkongkaew WL, Suphavilai R, et al. The unique characteristics of Thai Leber hereditary optic neuropathy: analysis of 30 G11778A pedigrees. Journal of Human Genetics. 2006;51(4):298–304.
    1. Lott MT, Voljavec AS, Wallace DC. Variable genotype of Leber’s hereditary optic neuropathy patients. American Journal of Ophthalmology. 1990;109(6):625–631.
    1. Bolhuis PA, Bleeker-Wagemakers EM, Ponne NJ, et al. Rapid shift in genotype of human mitochondrial DNA in a family with Leber’s hereditary optic neuropathy. Biochemical and Biophysical Research Communications. 1990;170(3):994–997.
    1. Howell N, Xu M, Halvorson S, Bodis-Wollner I, Sherman J. A heteroplasmic LHON family: tissue distribution and transmission of the 11778 mutation. American Journal of Human Genetics. 1994;55(1):203–206.
    1. Lightowlers RN, Chinnery PF, Turnbull DM, Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends in Genetics. 1997;13(11):450–455.
    1. Yen MY, Yen TC, Pang CY, Liu JH, Wei YH. Mitochondrial DNA mutation in Leber’s hereditary optic neuropathy. Investigative Ophthalmology and Visual Science. 1992;33(8):2561–2566.
    1. Barboni P, Mantovani V, Montagna P, et al. Mitochondrial DNA analysis in Leber’s hereditary optic neuropathy. Ophthalmic Paediatrics and Genetics. 1992;13(4):219–226.
    1. Puomila A, Viitanen T, Savontaus ML, Nikoskelainen E, Huoponen K. Segregation of the ND4/11778 and the ND1/3460 mutations in four heteroplasmic LHON families. Journal of the Neurological Sciences. 2002;205(1):41–45.
    1. Yen MY, Wang ANG, Wei YH. Leber’s hereditary optic neuropathy: a multifactorial disease. Progress in Retinal and Eye Research. 2006;25(4):381–396.
    1. Chuenkongkaew WL, Suphavilai R, Vaeusorn L, Phasukkijwatana N, Lertrit P, Suktitipat B. Proportion of 11778 mutant mitochondrial DNA and clinical expression in a Thai population with Leber hereditary optic neuropathy. Journal of Neuro-Ophthalmology. 2005;25(3):173–175.
    1. Chinnery PF, Andrews RM, Turnbull DM, Howell N. Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? American Journal of Medical Genetics. 2001;98(3):235–243.
    1. Brady ST, Lasek RJ, Allen RD. Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motility. 1985;5(2):81–101.
    1. Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochemistry International. 2002;40(6):573–584.
    1. Wong A, Cortopassi G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochemical and Biophysical Research Communications. 1997;239(1):139–145.
    1. Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M. Caspase-independent death of Leber’s hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis. 2005;10(5):997–1007.
    1. Zanna C, Ghelli A, Porcelli AM, Carelli V, Martinuzzi A, Rugolo M. Apoptotic cell death of cybrid cells bearing Leber's hereditary optic neuropathy mutations is caspase independent. Annals of the New York Academy of Sciences. 2003;1010:213–217.
    1. Battisti C, Formichi P, Cardaioli E, et al. Cell response to oxidative stress incluced apoptosis in patients with Leber’s hereditary optic neuropathy. Journal of Neurology, Neurosurgery and Psychiatry. 2004;75(12):1731–1736.
    1. Beretta S, Mattavelli L, Sala G, et al. Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain. 2004;127(10):2183–2192.
    1. Levin LA. Mechanisms of retinal ganglion specific-cell death in Leber hereditary optic neuropathy. Transactions of the American Ophthalmological Society. 2007;105:379–391.
    1. Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AHV, Cortopassi GA. Cells bearing mutations causing Leber’s hereditary optic neuropathy are sensitized to Fas-induced apoptosis. Journal of Biological Chemistry. 2002;277(8):5810–5815.
    1. Cortelli P, Montagna P, Pierangeli G, et al. Clinical and brain bioenergetics improvement with idebenone in a patient with Leber's hereditary optic neuropathy: a clinical and 31P-MRS study. Journal of the Neurological Sciences. 1997;148(1):25–31.
    1. Carelli V, Barboni P, Zacchini A, et al. Leber’s hereditary optic neuropathy (LHON) with 14484/ND6 mutation in a North African patient. Journal of the Neurological Sciences. 1998;160(2):183–188.
    1. Mashima Y, Kigasawa K, Wakakura M, Oguchi Y. Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? Journal of Neuro-Ophthalmology. 2000;20(3):166–170.
    1. Barnils García N, Mesa E, Muñoz S, Ferrer-Artola A, Arruga J. Response to idebenone and multivitamin therapy in Leber’s hereditary optic neuropathy. Archivos de la Sociedad Espanola de Oftalmologia. 2007;82(6):377–380.
    1. Newman NJ, Biousse V, David R, et al. Prophylaxis for second eye involvement in leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. American Journal of Ophthalmology. 2005;140(3):407.e1–407.e11.
    1. Manfredi G, Beal MF. Poison and antidote: a novel model to study pathogenesis and therapy of LHON. Annals of Neurology. 2004;56(2):171–172.
    1. Zhang X, Jones D, Gonzalez-Lima F. Mouse model of optic neuropathy caused by mitochondrial complex I dysfunction. Neuroscience Letters. 2002;326(2):97–100.
    1. Qi X, Lewin AS, Hauswirth WW, Guy J. Suppression of complex I gene expression induces optic neuropathy. Annals of Neurology. 2003;53(2):198–205.
    1. Qi X, Lewin AS, Hauswirth WW, Guy J. Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Investigative Ophthalmology and Visual Science. 2003;44(3):1088–1096.
    1. Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J. SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I. Annals of Neurology. 2004;56(2):182–191.
    1. Qi X, Sun L, Hauswirth WW, Lewin AS, Guy J. Use of mitochondrial antioxidant defenses for rescue of cells with a leber hereditary optic neuropathy-causing mutation. Archives of Ophthalmology. 2007;125(2):268–272.
    1. Kanamori A, Catrinescu M-M, Kanamori N, Mears KA, Beaubien R, Levin LA. Superoxide is an associated signal for apoptosis in axonal injury. Brain. 2010;133(9):2612–2625.
    1. Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Investigative Ophthalmology and Visual Science. 2007;48(1):1–10.
    1. Ellouze S, Augustin S, Bouaita A, et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. American Journal of Human Genetics. 2008;83(3):373–387.
    1. Larsson NG. Leber hereditary optic neuropathy: a nuclear solution of a mitochondrial problem. Annals of Neurology. 2002;52(5):529–530.
    1. Guy J, Qi X, Pallotti F, et al. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Annals of Neurology. 2002;52(5):534–542.
    1. Guy J, Qi X, Koilkonda RD, et al. Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Investigative Ophthalmology & Visual Science. 2009;50(9):4205–4214.
    1. Tsukihara T, Shimokata K, Katayama Y, et al. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(26):15304–15309.
    1. Figueroa-Martínez F, Vázquez-Acevedo M, Cortés-Hernández P, et al. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes. Mitochondrion. In press.
    1. Brookes PS, Pinner A, Ramachandran A, et al. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics. 2002;2(8):969–977.
    1. Oca-Cossio J, Kenyon L, Hao H, Moraes CT. Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics. 2003;165(2):707–720.
    1. Gilkerson RW, Selker JML, Capaldi RA. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Letters. 2003;546(2-3):355–358.
    1. Supekova L, Supek F, Greer JE, Schultz PG. A single mutation in the first transmembrane domain of yeast COX2 enables its allotopic expression. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(11):5047–5052.
    1. Bonnet C, Kaltimbacher V, Ellouze S, et al. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or V subunits. Rejuvenation Research. 2007;10(2):127–143.
    1. Shokolenko IN, Alexeyev MF, Ledoux SP, Wilson GL. The approaches for manipulating mitochondrial proteome. Environmental and Molecular Mutagenesis. 2010;51(5):451–461.
    1. Perales-Clemente E, Fernandez-Silva P, Acin-Perez R, Perez-Martos A, Enriquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Research. In press.
    1. Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Human Gene Therapy. 2008;19(10):979–990.
    1. Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T. In vivo complementation of complex I by the yeast Ndi1 enzyme: possible application for treatment of Parkinson disease. Journal of Biological Chemistry. 2006;281(20):14250–14255.
    1. Dudus L, Anand V, Acland GM, et al. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vision Research. 1999;39(15):2545–2553.
    1. Guy J, Qi X, Muzyczka N, Hauswirth WW. Reporter expression persists 1 year after adeno-associated virus- mediated gene transfer to the optic nerve. Archives of Ophthalmology. 1999;117(7):929–937.
    1. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nature Genetics. 2001;28(1):92–95.
    1. McCarty DM. Self-complementary AAV vectors; advances and applications. Molecular Therapy. 2008;16(10):1648–1656.
    1. McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy. 2001;8(16):1248–1254.
    1. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy. 2003;10(26):2112–2118.
    1. Zhong LI, Li B, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology. 2008;381(2):194–202.
    1. Zhong LI, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(22):7827–7832.
    1. Koilkonda RD, Chou T-H, Porciatti V, Hauswirth WW, Guy J. Induction of rapid and highly efficient expression of the human ND4 complex I subunit in the mouse visual system by self-complementary adeno-associated virus. Archives of Ophthalmology. 2010;128(7):876–883.
    1. Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Therapy. 2008;15(11):808–816.
    1. Tachibana M, Sparman M, Sritanaudomchai H, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–372.
    1. Keeney PM, Quigley CK, Dunham LD, et al. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Human Gene Therapy. 2009;20(8):897–907.
    1. Bacman SR, Williams SL, Hernandez D, Moraes CT. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ’differential multiple cleavage-site’ model. Gene Therapy. 2007;14(18):1309–1318.
    1. DiMauro S, Hirano M, Schon EA. Approaches to the treatment of mitochondrial diseases. Muscle and Nerve. 2006;34(3):265–283.
    1. Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(40):14392–14397.
    1. Ojaimi J, Pan J, Santra S, Snell WJ, Schon EA. An algal nucleus-encoded subunit of mitochondrial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit. Molecular Biology of the Cell. 2002;13(11):3836–3844.
    1. Seo BB, Kitajima-Ihara T, Chan EKL, Scheffler IE, Matsuno-Yagi A, Yagi T. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(16):9167–9171.
    1. Bai Y, Hájek P, Chomyn A, et al. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. Journal of Biological Chemistry. 2001;276(42):38808–38813.
    1. Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One. 2010;5(7) Article ID e11472.
    1. Bahadorani S, Cho J, Lo T, et al. Neuronal expression of a single-subunit yeast NADH-ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan. Aging cell. 2010;9(2):191–202.
    1. Lam BL, Feuer WJ, Abukhalil F, Porciatti V, Hauswirth WW, Guy J. Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Archives of Ophthalmology. 2010;128(9):1129–1135.
    1. Bainbridge JWB. Prospects for gene therapy of inherited retinal disease. Eye. 2009;23(10):1898–1903.
    1. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. New England Journal of Medicine. 2008;358(21):2240–2248.
    1. Matsumoto M, Hayasaka S, Kadoi C, et al. Secondary mutations of mitochondrial DNA in Japanese patients with Leber’s hereditary optic neuropathy. Ophthalmic Genetics. 1999;20(3):153–160.
    1. Blakely EL, de Silva R, King A, et al. LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation. European Journal of Human Genetics. 2005;13(5):623–627.
    1. Brown MD, Voljavec AS, Lott MT, Torroni A, Yang CC, Wallace DC. Mitochondrial DNA complex I and III mutations associated with Leber’s hereditary optic neuropathy. Genetics. 1992;130(1):163–173.
    1. Brown MD, Zhadanov S, Allen JC, et al. Novel mtDNA mutations and oxidative phosphorylation dysfunction in Russian LHON families. Human Genetics. 2001;109(1):33–39.
    1. Fauser S, Luberichs J, Besch D, Leo-Kottler B. Sequence analysis of the complete mitochondrial genome in patients with Leber’s hereditary optic neuropathy lacking the three most common pathogenic DNA mutations. Biochemical and Biophysical Research Communications. 2002;295(2):342–347.
    1. Valentino ML, Barboni P, Ghelli A, et al. The ND1 gene of complex I is a mutational hot spot for Leber’s hereditary optic neuropathy. Annals of Neurology. 2004;56(5):631–641.
    1. Huoponen K, Lamminen T, Juvonen V, Aula P, Nikoskelainen E, Savontaus ML. The spectrum of mitochondrial DNA mutations in families with Leber hereditary optic neuroretinopathy. Human Genetics. 1993;92(4):379–384.
    1. Howell N, Kubacka I, Xu M, McCullough DA. Leber hereditary optic neuropathy: involvement of the mitochondrial ND1 gene and evidence for an intragenic suppressor mutation. American Journal of Human Genetics. 1991;48(5):935–942.
    1. Kim JY, Hwang JM, Park SS. Mitochondrial DNA C4171A/ND1 is a novel primary causative mutation of Leber’s hereditary optic neuropathy with a good prognosis. Annals of Neurology. 2002;51(5):630–634.
    1. Johns DR, Berman J. Alternative, simultaneous complex I mitochondrial DNA mutations in Leber’s hereditary optic neuropathy. Biochemical and Biophysical Research Communications. 1991;174(3):1324–1330.
    1. Abu-Amero KK, Bosley TM. Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Investigative Ophthalmology and Visual Science. 2006;47(10):4211–4220.
    1. Brown MD, Yang C-C, Trounce I, Torroni A, Lott MT, Wallace DC. A mitochondrial DNA variant, identified in Leber hereditary optic neuropathy patients, which extends the amino acid sequence of cytochrome c oxidase subunit I. American Journal of Human Genetics. 1992;51(2):378–385.
    1. Yang J, Zhu Y, Tong YI, et al. The novel G10680A mutation is associated with complete penetrance of the LHON/T14484C family. Mitochondrion. 2009;9(4):273–278.
    1. Brown MD, Voljavec AS, Lott MT, MacDonald I, Wallace DC. Leber’s hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB Journal. 1992;6(10):2791–2799.
    1. Horvath J, Horvath R, Karcagi V, Komoly S, Johns DR. Sequence analysis of Hungarian LHON patients not carrying the common primary mutations. Journal of Inherited Metabolic Disease. 2002;25(4):323–324.
    1. Kjer P. Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmologica. Supplement. 1959;164(supplement 54):1–147.
    1. De Vries DD, Went LN, Bruyn GW, et al. Genetic and biochemical impairment of mitochondrial complex I activity in a family with Leber hereditary optic neuropathy and hereditary spastic dystonia. American Journal of Human Genetics. 1996;58(4):703–711.
    1. Brown MD, Torroni A, Reckord CL, Wallace DC. Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Human Mutation. 1995;6(4):311–325.
    1. Mayorov V, Biousse V, Newman NJ, Brown MD. The role of the ND5 gene in LHON: characterization of a new, heteroplasmic LHON mutation. Annals of Neurology. 2005;58(5):807–811.
    1. Liolitsa D, Rahman S, Benton S, Carr LJ, Hanna MG. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Annals of Neurology. 2003;53(1):128–132.
    1. Howell N, Oostra RJ, Bolhuis PA, et al. Sequence analysis of the mitochondrial genomes from Dutch pedigrees with leber hereditary optic neuropathy. American Journal of Human Genetics. 2003;72(6):1460–1469.
    1. Batandier C, Picard A, Tessier N, Lunardi J. Identification of a novel T398A mutation in the ND5 subunit of the mitochondrial complex I and of three novel mtDNA polymorphisms in two patients presenting ocular symptoms. Human Mutation. 2000;16(6):p. 532.
    1. Howell N, Halvorson S, Burns J, McCullough DA, Poulton J. When does bilateral optic atrophy become Leber hereditary optic neuropathy? American Journal of Human Genetics. 1993;53(4):959–963.
    1. Besch D, Leo-Kottler B, Zrenner E, Wissinger B. Leber’s hereditary optic neuropathy: clinical and molecular genetic findings in a patient with a new mutation in the ND6 gene. Graefe’s Archive for Clinical and Experimental Ophthalmology. 1999;237(9):745–752.
    1. Zhadanov SI, Atamanov VV, Zhadanov NI, Oleinikov OV, Osipova LP, Schurr TG. A novel mtDNA ND6 gene mutation associated with LHON in a Caucasian family. Biochemical and Biophysical Research Communications. 2005;332(4):1115–1121.
    1. Jun AS, Brown MD, Wallace DC. A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(13):6206–6210.
    1. Howell N, Bogolin C, Jamieson R, Marenda DR, Mackey DA. mtDNA mutations that cause optic neuropathy: how do we know? American Journal of Human Genetics. 1998;62(1):196–202.
    1. Chinnery PF, Brown DT, Andrews RM, et al. The mitochondrial ND6 gene is a hot spot for mutations that cause Leber’s hereditary optic neuropathy. Brain. 2001;124(1):209–218.
    1. Wissinger B, Besch D, Baumann B, et al. Mutation analysis of the ND6 gene in patients with lebers hereditary optic neuropathy. Biochemical and Biophysical Research Communications. 1997;234(2):511–515.
    1. Morgia CLa, Achilli A, Iommarini L, et al. Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus. Neurology. 2008;70(10):762–770.
    1. Johns DR, Neufeld MJ. Cytochrome b mutations in Leber hereditary optic neuropathy. Biochemical and Biophysical Research Communications. 1991;181(3):1358–1364.
    1. Johns DR, Neufeld MJ. Cytochrome c oxidase mutations in Leber hereditary optic neuropathy. Biochemical and Biophysical Research Communications. 1993;196(2):810–815.
    1. Povalko N, Zakharova E, Rudenskaia G, et al. A new sequence variant in mitochondrial DNA associated with high penetrance of Russian Leber hereditary optic neuropathy. Mitochondrion. 2005;5(3):194–199.

Source: PubMed

3
Sottoscrivi