Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200

Daruka Mahadevan, Mark C Lanasa, Charles Farber, Manjari Pandey, Maria Whelden, Susan J Faas, Terrie Ulery, Anjli Kukreja, Lan Li, Camille L Bedrosian, Xiaoping Zhang, Leonard T Heffner, Daruka Mahadevan, Mark C Lanasa, Charles Farber, Manjari Pandey, Maria Whelden, Susan J Faas, Terrie Ulery, Anjli Kukreja, Lan Li, Camille L Bedrosian, Xiaoping Zhang, Leonard T Heffner

Abstract

Purpose: Samalizumab is a novel recombinant humanized monoclonal antibody that targets CD200, an immunoregulatory cell surface member of the immunoglobulin superfamily that dampens excessive immune responses and maintains self-tolerance. This first-in-human study investigated the therapeutic use of samalizumab as a CD200 immune checkpoint inhibitor in chronic lymphocytic leukemia (CLL) and multiple myeloma (MM).

Experimental design: Twenty-three patients with advanced CLL and 3 patients with MM were enrolled in an open-label phase 1 study (NCT00648739). Patients were assigned sequentially to one of 7 dose level cohorts (50 to 600 mg/m2) in a 3 + 3 study design, receiving a single dose of samalizumab intravenously once every 28 days. Primary endpoints were safety, identification of the maximum tolerated dose (MTD), and pharmacokinetics. Secondary endpoints were samalizumab binding to CD200, pharmacodynamic effects on circulating tumor cells and leukocyte subsets, and clinical responses.

Results: Twenty-one patients received > 1 treatment cycle. Adverse events (AEs) were generally mild to moderate in severity. Samalizumab produced dose-dependent decreases in CD200 expression on CLL cells and decreased frequencies of circulating CD200 + CD4+ T cells that were sustained at higher doses. The MTD was not reached. Decreased tumor burden was observed in 14 CLL patients. One CLL patient achieved a durable partial response and 16 patients had stable disease. All MM patients had disease progression.

Conclusions: Samalizumab had a good safety profile and treatment was associated with reduced tumor burden in a majority of patients with advanced CLL. These preliminary positive results support further development of samalizumab as an immune checkpoint inhibitor.

Trial registration: ClinicalTrials.gov, NCT00648739 registered April 1, 2008.

Keywords: CD200; CLL; Immune checkpoint inhibitor; Multiple myeloma; Samalizumab.

Conflict of interest statement

Academic authors have nothing to disclose. MW, SJF, TU, AK, LL, CLB, and XP are employed by Alexion Pharmaceuticals, Inc.

Figures

Fig. 1
Fig. 1
Each panel displays data for a single patient (indicated at the top of each graph) at baseline (Day 0) and after samalizumab dosing at the indicated time points. For simplicity, no more than the first 4 dosing cycles are shown. a. Percent change from baseline in CLL CD200 expression (mean channel fluorescence (MFI)) in CLL patients. b. Percent change from baseline in CD200+ CD4+ T cells (%) in CLL and MM patients
Fig. 2
Fig. 2
Each vertical bar represents the maximum change obtained for a single patient, identified by the six digit code at the bottom of the graph, that had a baseline CT scan and at least one subsequent scan. The horizontal dotted line at 50% represents a cut-off above which lymph node enlargement represents progressive disease whereas the horizontal dotted line at − 30% represent a cut-off below which lymph node regression represents clinically significant improvement. Patient 107–602 (500 mg/m2 cohort) did not have a post-dose CT scan and was not evaluable

References

    1. Barclay AN, Clark MJ, McCaughan GW. Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure. Bioch Soc Symp. 1986;51:149–157.
    1. Clark MJ, Gagnon J, Williams AF, Barclay AN. MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain. EMBO J. 1985;4(1):113–118. doi: 10.1002/j.1460-2075.1985.tb02324.x.
    1. Wright GJ, Puklavec MJ, Willis AC, et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity. 2000;13:233–242. doi: 10.1016/S1074-7613(00)00023-6.
    1. Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102(2):173–179. doi: 10.1046/j.1365-2567.2001.01163.x.
    1. Clark DA, Keil A, Chen Z, Markert U, Manuel J, Gorczynski RM. Placental trophoblast from successful human pregnancies expresses the tolerance signaling molecule, CD200 (OX-2) Am J Reprod Immunol. 2003;50(3):187–195. doi: 10.1034/j.1600-0897.2003.00086.x.
    1. Webb M, Barclay AN. Localisation of the MRC OX-2 glycoprotein on the surfaces of neurons. J Neurochem. 1984;43(4):1061–1067. doi: 10.1111/j.1471-4159.1984.tb12844.x.
    1. Barclay AN, Wright GJ, Brooke G, Brown MH. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002;23(6):285–290. doi: 10.1016/S1471-4906(02)02223-8.
    1. Wright GJ, Cherwinski H, Foster-Cuevas M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol. 2003;171:3034–3046. doi: 10.4049/jimmunol.171.6.3034.
    1. Coles SJ, Wang ECY, Man S, et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia. 2011;25(5):792–799. doi: 10.1038/leu.2011.1.
    1. Gorczynski R. CD200:CD200R-mediated regulation of immunity. ISRN Immunol. 2012;2012.
    1. Holmannova D, Kolackova M, Kondelkova K, Kunes P, Krejsek J, Andrys C. CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses; part I: CD200/CD200R structure, activation, and function. Acta Med (Hradec Kralove) 2012;55(1):12–17. doi: 10.14712/18059694.2015.68.
    1. Prendergast GC, Smith C, Thomas S, et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother. 2014;63(7):721–735. doi: 10.1007/s00262-014-1549-4.
    1. Rygiel TP, Meyaard L. CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr Opin Immunol. 2012;24(2):233–238. doi: 10.1016/j.coi.2012.01.002.
    1. McWhirter JR, Kretz-Rommel A, Saven A, et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci U S A. 2006;103(4):1041–1046. doi: 10.1073/pnas.0510081103.
    1. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006;108(13):4194–4197. doi: 10.1182/blood-2006-06-029355.
    1. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A. Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother. 2008;57(7):987–996. doi: 10.1007/s00262-007-0429-6.
    1. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364(4):778–782. doi: 10.1016/j.bbrc.2007.10.067.
    1. Alapat D, Coviello-Malle JM, Owens R, et al. Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol. 2012;137(1):93–100. doi: 10.1309/AJCP59UORCYZEVQO.
    1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264. doi: 10.1038/nrc3239.
    1. Norde WJ, Hobo W, van der Voort R, Dolstra H. Coinhibitory molecules in hematologic malignancies: targets for therapeutic intervention. Blood. 2012;120(4):728–736. doi: 10.1182/blood-2012-02-412510.
    1. Ramsay AG. Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity. Br J Haematol. 2013;162(3):313–325. doi: 10.1111/bjh.12380.
    1. Pallasch CP, Ulbrich S, Brinker R, Hallek M, Uger RA, Wendtner CM. Disruption of T cell suppression in chronic lymphocytic leukemia by CD200 blockade. Leuk Res. 2009;33(3):460–464. doi: 10.1016/j.leukres.2008.08.021.
    1. Kretz-Rommel A, Qin F, Dakappagari N, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol. 2007;178(9):5595–5605. doi: 10.4049/jimmunol.178.9.5595.
    1. Gorczynski RM, Chen Z, Diao J, Khatri I, Wong K, Yu K, Behnke J. Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat. 2010;123(2):405–415. doi: 10.1007/s10549-009-0667-8.
    1. Osmana AA, Eissaa DG, Moussab MM. CD200 is an independent prognostic factor in multiple myeloma. Egyptian J Haematol. 2014;39:177–181. doi: 10.4103/1110-1067.148254.
    1. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS. Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol. 2008;180(2):699–705. doi: 10.4049/jimmunol.180.2.699.
    1. Ascierto PA, Marincola FM. 2015: the year of anti-PD-1/PD-L1s against melanoma and beyond. EBioMedicine. 2015;2(2):92–93. doi: 10.1016/j.ebiom.2015.01.011.
    1. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466.
    1. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454. doi: 10.1056/NEJMoa1200690.
    1. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028. doi: 10.1056/NEJMoa1501824.
    1. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–1813. doi: 10.1056/NEJMoa1510665.
    1. Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–918. doi: 10.1016/S1470-2045(15)00083-2.
    1. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330. doi: 10.1056/NEJMoa1412082.
    1. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–1117. doi: 10.1016/S0140-6736(14)60958-2.
    1. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–1030. doi: 10.1200/JCO.2013.53.0105.
    1. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi: 10.1056/NEJMoa1504030.
    1. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–133. doi: 10.1056/NEJMoa1302369.
    1. Allison JP. Immune checkpoint blockade in cancer therapy. The 2015 Lasker DeBakey clinical medical research award. JAMA. 2015;314(11):1113–1114. doi: 10.1001/jama.2015.11929.
    1. Jacob JA. Cancer immunotherapy researchers focus on refining checkpoint blockade therapies. JAMA. 2015;314(20):2117–2119. doi: 10.1001/jama.2015.10795.
    1. Jing W, Gershan JA, Weber J, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2–15. doi: 10.1186/s40425-014-0043-z.
    1. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G. Do¨hner H, et al. guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the international workshop on chronic lymphocytic leukemia updating the National Cancer Institute-working group 1996 guidelines. Blood. 2008;111(12):5446–5456. doi: 10.1182/blood-2007-06-093906.
    1. Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–1473. doi: 10.1038/sj.leu.2404284.
    1. Kumar S, Lacy MQ, Dispenzieri A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant. 2004;34:161–167. doi: 10.1038/sj.bmt.1704545.
    1. Dreger P, Dohner H, Ritgen M, et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the GCLLSG CLL3X trial. Blood. 2010;116:2438–2447. doi: 10.1182/blood-2010-03-275420.
    1. Van Walle I, Gansemans Y, Parren PW, Stas P, Lasters I. Immunogenicity screening in protein drug development. Expert Opin Biol Ther. 2007;7(3):405–418. doi: 10.1517/14712598.7.3.405.
    1. Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies. MAbs. 2010;2(3):256–265. doi: 10.4161/mabs.2.3.11641.
    1. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–88. doi: 10.1016/S1359-6446(05)03638-X.
    1. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–659. doi: 10.2165/11535960-000000000-00000.
    1. Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–7420. doi: 10.1158/1078-0432.CCR-09-1624.

Source: PubMed

3
Sottoscrivi