RA Differentiation Enhances Dopaminergic Features, Changes Redox Parameters, and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

Fernanda M Lopes, Leonardo Lisbôa da Motta, Marco A De Bastiani, Bianca Pfaffenseller, Bianca W Aguiar, Luiz F de Souza, Geancarlo Zanatta, Daiani M Vargas, Patrícia Schönhofen, Giovana F Londero, Liana M de Medeiros, Valder N Freire, Alcir L Dafre, Mauro A A Castro, Richard B Parsons, Fabio Klamt, Fernanda M Lopes, Leonardo Lisbôa da Motta, Marco A De Bastiani, Bianca Pfaffenseller, Bianca W Aguiar, Luiz F de Souza, Geancarlo Zanatta, Daiani M Vargas, Patrícia Schönhofen, Giovana F Londero, Liana M de Medeiros, Valder N Freire, Alcir L Dafre, Mauro A A Castro, Richard B Parsons, Fabio Klamt

Abstract

Research on Parkinson's disease (PD) and drug development is hampered by the lack of suitable human in vitro models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared with other cellular models. Here, we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H2O2 insult, they were twofold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol-reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here, we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an in vitro model of PD. This study may impact our understanding of the pathological mechanisms of PD and the development of new therapies and drugs for the management of the disease.

Keywords: 6-hydroxydopamine; Dopamine transporter; Experimental model; Parkinson’s disease; Retinoic acid; SH-SY5Y cells.

References

    1. Funct Neurol. 1988 Oct-Dec;3(4):407-12
    1. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
    1. Mol Neurobiol. 2016 Oct 22;:null
    1. Biol Psychiatry. 2014 Jun 15;75(12):952-60
    1. Eur J Pharmacol. 2008 Apr 14;584(1):185-91
    1. Neurology. 2009 Feb 17;72(7 Suppl):S59-64
    1. Neurotox Res. 2012 Aug;22(2):138-49
    1. J Neurochem. 1990 Dec;55(6):2142-5
    1. Free Radic Biol Med. 2013 Sep;62:132-44
    1. Neurol Clin. 2015 Feb;33(1):1-17
    1. PLoS One. 2012;7(11):e50683
    1. Nature. 2013 Nov 7;503(7474):85-90
    1. J Neurosci Res. 2005 Mar 15;79(6):849-60
    1. Int J Dev Biol. 2012;56(4):273-8
    1. Neurotoxicology. 2010 Jan;31(1):164-5; author reply 165-6
    1. Neurotox Res. 2004;5(8):579-98
    1. PLoS One. 2014 Feb 21;9(2):e87388
    1. J Neural Transm (Vienna). 2000;107(3):281-93
    1. J Biol Chem. 2006 Mar 3;281(9):5373-82
    1. Brain Res. 2010 Jun 14;1337:85-94
    1. Experientia. 1971 Mar 15;27(3):297-9
    1. J Biomol Screen. 2016 Jun;21(5):496-509
    1. Eur Neurol. 1991;31 Suppl 1:48-59
    1. Antioxid Redox Signal. 2012 Dec 15;17(12):1764-84
    1. J Exp Biol. 2006 Feb;209(Pt 4):577-89
    1. Cancer Res. 1978 Nov;38(11 Pt 1):3751-7
    1. Mol Carcinog. 2004 Feb;39(2):103-13
    1. Brain Res Mol Brain Res. 1993 Apr;18(1-2):181-6
    1. Annu Rev Biophys. 2015;44:339-67
    1. Cell Cycle. 2015;14(5):712-20
    1. Methods Mol Biol. 2013;1078:9-21
    1. J Neural Transm Suppl. 1997;50:55-66
    1. Biochem Pharmacol. 2005 Nov 1;70(9):1320-9
    1. Neurochem Res. 2012 Oct;37(10):2150-60
    1. J Neurochem. 2000 Apr;74(4):1605-12
    1. Neurotoxicology. 2008 May;29(3):361-76
    1. Eur J Pharmacol. 1995 May 26;293(1):55-64
    1. Chin Med J (Engl). 2010 Apr 20;123(8):1086-92
    1. Oncol Res. 1996;8(4):171-8
    1. Cell Mol Neurobiol. 2017 May;37(4):665-682
    1. PLoS One. 2013 Oct 07;8(10 ):e76761
    1. J Biol Chem. 2002 Nov 1;277(44):41652-6
    1. Semin Nucl Med. 2007 Jul;37(4):286-302
    1. Cell Differ. 1984 Jun;14(2):135-44
    1. Mol Neurobiol. 2017 May;54(4):2813-2822
    1. PLoS One. 2015 Aug 28;10(8):e0136769
    1. Ann Neurol. 2008 Dec;64 Suppl 2:S101-10
    1. Mol Neurobiol. 2015 Aug;52(1):26-37
    1. J Alzheimers Dis. 2010;20(4):1069-82
    1. J Neurochem. 2006 Jun;97(6):1634-58
    1. Nat Med. 2010 Jun;16(6):653-61
    1. PLoS One. 2013 May 28;8(5):e63862
    1. Proteins. 2002 Jun 1;47(4):409-43
    1. Nat Rev Neurosci. 2007 May;8(5):368-78
    1. Experientia. 1973 Mar 15;29(3):314-5
    1. Neurotoxicol Teratol. 2010 Jan-Feb;32(1):36-41
    1. J Comp Neurol. 2004 Nov 8;479(2):198-215
    1. Curr Biol. 2005 Dec 20;15(24):2236-42
    1. Biochim Biophys Acta. 2009 Nov;1792(11):1043-51
    1. J Cell Biol. 1996 Jun;133(6):1237-50
    1. Biochem Biophys Res Commun. 2012 Aug 3;424(3):421-6
    1. J Biol Chem. 2014 Mar 28;289(13):8735-41
    1. J Neurochem. 2004 Dec;91(5):1025-43
    1. Free Radic Biol Med. 2010 Dec 15;49(12):1856-71
    1. Neurotoxicology. 2009 Jan;30(1):127-35
    1. Arch Biochem Biophys. 2011 Apr 1;508(1):1-12

Source: PubMed

3
Sottoscrivi