The molecular diagnosis of rejection in liver transplant biopsies: First results of the INTERLIVER study

Katelynn Madill-Thomsen, Marwan Abouljoud, Chandra Bhati, Michał Ciszek, Magdalena Durlik, Sandy Feng, Bartosz Foroncewicz, Iman Francis, Michał Grąt, Krzysztof Jurczyk, Goran Klintmalm, Maciej Krasnodębski, Geoff McCaughan, Rosa Miquel, Aldo Montano-Loza, Dilip Moonka, Krzysztof Mucha, Marek Myślak, Leszek Pączek, Agnieszka Perkowska-Ptasińska, Grzegorz Piecha, Trevor Reichman, Alberto Sanchez-Fueyo, Olga Tronina, Marta Wawrzynowicz-Syczewska, Andrzej Więcek, Krzysztof Zieniewicz, Philip F Halloran, Katelynn Madill-Thomsen, Marwan Abouljoud, Chandra Bhati, Michał Ciszek, Magdalena Durlik, Sandy Feng, Bartosz Foroncewicz, Iman Francis, Michał Grąt, Krzysztof Jurczyk, Goran Klintmalm, Maciej Krasnodębski, Geoff McCaughan, Rosa Miquel, Aldo Montano-Loza, Dilip Moonka, Krzysztof Mucha, Marek Myślak, Leszek Pączek, Agnieszka Perkowska-Ptasińska, Grzegorz Piecha, Trevor Reichman, Alberto Sanchez-Fueyo, Olga Tronina, Marta Wawrzynowicz-Syczewska, Andrzej Więcek, Krzysztof Zieniewicz, Philip F Halloran

Abstract

Molecular diagnosis of rejection is emerging in kidney, heart, and lung transplant biopsies and could offer insights for liver transplant biopsies. We measured gene expression by microarrays in 235 liver transplant biopsies from 10 centers. Unsupervised archetypal analysis based on expression of previously annotated rejection-related transcripts identified 4 groups: normal "R1normal " (N = 129), T cell-mediated rejection (TCMR) "R2TCMR " (N = 37), early injury "R3injury " (N = 61), and fibrosis "R4late " (N = 8). Groups differed in median time posttransplant, for example, R3injury 99 days vs R4late 3117 days. R2TCMR biopsies expressed typical TCMR-related transcripts, for example, intense IFNG-induced effects. R3injury displayed increased expression of parenchymal injury transcripts (eg, hypoxia-inducible factor EGLN1). R4late biopsies showed immunoglobulin transcripts and injury-related transcripts. R2TCMR correlated with histologic rejection although with many discrepancies, and R4late with fibrosis. R2TCMR , R3injury , and R4late correlated with liver function abnormalities. Supervised classifiers trained on histologic rejection showed less agreement with histology than unsupervised R2TCMR scores. No confirmed cases of clinical antibody-mediated rejection (ABMR) were present in the population, and strategies that previously revealed ABMR in kidney and heart transplants failed to reveal a liver ABMR phenotype. In conclusion, molecular analysis of liver transplant biopsies detects rejection, has the potential to resolve ambiguities, and could assist with immunosuppressive management.

Keywords: basic (laboratory) research/science; biopsy; liver transplantation/hepatology; microarray/gene array; molecular biology: mRNA/mRNA expression; rejection.

© 2020 The American Society of Transplantation and the American Society of Transplant Surgeons.

References

REFERENCES

    1. McCaughan GW, Gorrell MD, Alex Bishop G, et al. Molecular pathogenesis of liver disease: an approach to hepatic inflammation, cirrhosis and liver transplant tolerance. Immunol Rev. 2000;174:172-191.
    1. Neuberger J. An update on liver transplantation: a critical review. J Autoimmun. 2016;66:51-59.
    1. Zarrinpar A, Busuttil RW. Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol. 2013;10(7):434-440.
    1. Wadström J, Ericzon B-G, Halloran PF, et al. Advancing transplantation: new questions, new possibilities in kidney and liver transplantation. Transplantation. 2017;101(Suppl 2S):S1-S41.
    1. Demetris AJ, Bellamy C, Hübscher SG, et al. 2016 Comprehensive update of the banff working group on liver allograft pathology: introduction of antibody-mediated rejection. Am J Transplant. 2016;16(10):2816-2835.
    1. Fisher LR, Henley KS, Lucey MR. Acute cellular rejection after liver transplantation: variability, morbidity, and mortality. Liver Transpl Surg. 1995;1(1):10-15.
    1. Regev A, Molina E, Moura R, et al. Reliability of histopathologic assessment for the differentiation of recurrent hepatitis C from acute rejection after liver transplantation. Liver Transpl. 2004;10(10):1233-1239.
    1. Younossi ZM, Boparai N, Gramlich T, Goldblum J, George P, Mayes J. Agreement in pathologic interpretation of liver biopsy specimens in posttransplant hepatitis C infection. Arch Pathol Lab Med. 1999;123(2):143-145.
    1. Pournik O, Alavian SM, Ghalichi L, et al. Inter-observer and intra-observer agreement in pathological evaluation of non-alcoholic fatty liver disease suspected liver biopsies. Hepat Mon. 2014;14(1):e15167.
    1. Wiesner RH. Is hepatic histology the true gold standard in diagnosing acute hepatic allograft rejection? Liver Transpl Surg. 1996;2(2):165-167.
    1. Horvath B, Allende D, Xie H, et al. Interobserver variability in scoring liver biopsies with a diagnosis of alcoholic hepatitis. Alcohol Clin Exp Res. 2017;41(9):1568-1573.
    1. Netto GJ, Watkins DL, Williams JW, et al. Interobserver agreement in hepatitis C grading and staging and in the Banff grading schema for acute cellular rejection - the "Hepatitis C 3" multi-institutional trial experience. Arch Pathol Lab Med. 2006;130(8):1157-1162.
    1. Lee M. Antibody-mediated rejection after liver transplant. Gastroenterol Clin North Am. 2017;46(2):297-309.
    1. Taner T, Stegall MD, Heimbach JK. Antibody-mediated rejection in liver transplantation: current controversies and future directions. Liver Transpl. 2014;20(5):514-527.
    1. Dao M, Habès D, Taupin J-L, et al. Morphological characterization of chronic antibody-mediated rejection in ABO-identical or ABO-compatible pediatric liver graft recipients. Liver Transpl. 2018;24(7):897-907.
    1. Clavien PA, Muller X, de Oliveira ML, Dutkowski P, Sanchez-Fueyo A. Can immunosuppression be stopped after liver transplantation? Lancet Gastroenterol Hepatol. 2017;2(7):531-537.
    1. Ascha MS, Ascha ML, Hanouneh IA. Management of immunosuppressant agents following liver transplantation: less is more. World J Hepatol. 2016;8(3):148-161.
    1. Cheng EY, Terasaki PI. Tolerogenic mechanisms in liver transplantation. SOJ Immunology. 2015;3(4):1-13.
    1. Moini M, Schilsky ML, Tichy EM. Review on immunosuppression in liver transplantation. World J Hepatol. 2015;7(10):1355-1368.
    1. Lerut J, Sanchez-Fueyo A. An appraisal of tolerance in liver transplantation. Am J Transplant. 2006;6(8):1774-1780.
    1. Savage TM, Shonts BA, Lau S, et al. Deletion of donor-reactive T cell clones following human liver transplantation. Am J Transplant. 2020;20(2):538-545.
    1. Levitsky J, Feng S. Tolerance in clinical liver transplantation. Hum Immunol. 2018;79(5):283-287.
    1. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753-766.
    1. Vionnet J, Sanchez-Fueyo A. Biomarkers of immune tolerance in liver transplantation. Hum Immunol. 2018;79(5):388-394.
    1. Mastoridis S, Martinez-Llordella M, Sanchez-Fueyo A. Emergent transcriptomic technologies and their role in the discovery of biomarkers of liver transplant tolerance. Front Immunol. 2015;6:304.
    1. Mofrad P, Contos MJ, Haque M, et al. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology. 2003;37(6):1286-1292.
    1. Sorrentino P, Tarantino G, Conca P, et al. Silent non-alcoholic fatty liver disease-a clinical-histological study. J Hepatol. 2004;41(5):751-757.
    1. Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (1st ed.). New York, NY: Basic Books; 2019:341.
    1. Reeve J, Böhmig GA, Eskandary F, et al. Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers. Am J Transplant. 2019;19(10):2719-2731.
    1. Madill-Thomsen KS, Wiggins RC, Eskandary F, Bohmig GA, Halloran PF. The effect of cortex/medulla proportions on molecular diagnoses in kidney transplant biopsies: rejection and injury can be assessed in medulla. Am J Transplant. 2017;17(8):2117-2128.
    1. Halloran PF, Reeve J, Akalin E, et al. Real time central assessment of kidney transplant indication biopsies by microarrays: the INTERCOMEX study. Am J Transplant. 2017;17(11):2851-2862.
    1. Madill-Thomsen K, Perkowska-Ptasińska A, Böhmig GA, et al. Discrepancy analysis comparing molecular and histology diagnoses in kidney transplant biopsies. Am J Transplant. 2020.
    1. Reeve J, Kim DH, Crespo-Leiro MG, et al. Molecular diagnosis of rejection phenotypes in 889 heart transplant biopsies: the INTERHEART study. J Heart Lung Transplant. 2018;37(4):S27.
    1. Halloran PF, Reeve J, Aliabadi AZ, et al. Exploring the cardiac response to injury in heart transplant biopsies. JCI Insight. 2018;3(20):e123674.
    1. Parkes M, Halloran K, Famulski K, Halloran P, Grp IS. Molecular phenotypes of injury and rejection in lung transplant transbronchial biopsies. Am J Transplant. 2018;18(S4):274-275.
    1. Halloran KM, Parkes MD, Chang J, et al. Molecular assessment of rejection and injury in lung transplant biopsies. J Heart Lung Transplant. 2019;38(5):504-513.
    1. Halloran K, Parkes MD, Timofte IL, et al. Molecular phenotyping of rejection-related changes in mucosal biopsies from lung transplants. Am J Transplant. 2019.
    1. Einecke G, Reeve J, Sis B, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest. 2010;120(6):1862-1872.
    1. Halloran PF, Pereira AB, Chang J, et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am J Transplant. 2013;13(11):2865-2874.
    1. Famulski KS, Reeve J, de Freitas DG, Kreepala C, Chang J, Halloran PF. Kidney transplants with progressing chronic diseases express high levels of acute kidney injury transcripts. Am J Transplant. 2013;13(3):634-644.
    1. Halloran PF, Matas A, Kasiske BL, Madill-Thomsen KS, Mackova M, Famulski KS. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Am J Transplant. 2019;19(5):1356-1370.
    1. Einecke G, Reeve J, Halloran P. Predictors of graft survival at the time of a kidney transplant indication biopsy. Am J Transplant. 2018;18(S4);370.
    1. Halloran PF, Chang J, Famulski K, et al. Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J Am Soc Nephrol. 2015;26(7):1711-1720.
    1. Halloran PF, Famulski KS, Reeve J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat Rev Nephrol. 2016;12(9):534-548.
    1. Venner JM, Hidalgo LG, Famulski KS, Chang J, Halloran PF. The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transplant. 2015;15(5):1336-1348.
    1. Halloran P, Kim D, Loupy A, et al. Development and validation of a molecular microscope diagnostic system (MMDx) for Heart Transplant Biopsies. American Journal of Transplantation. 2016;16(4S):332.
    1. Halloran PF, Reeve J, Group IS. Validating the INTERHEART classifiers for molecular diagnosis of rejection in 437 new endomyocardial biopsies. J Heart Lung Transplant. 2018;37(S4):S303-S304.
    1. Parkes M, Reeve J, Kim D, et al. Molecular assessment of heart transplant biopsies: emergence of the injury dimension. Transplantation. 2018;102:S62-S63.
    1. Halloran K, Parkes MD, Chang J, et al. Molecular detection of rejection-like changes in proximal bronchial mucosal lung transplant biopsies: initial findings of the INTERLUNG study. J Heart Lung Transplant. 2018;37(4):S80-S81.
    1. Okubo K, Wada H, Tanaka A, et al. Identification of novel and noninvasive biomarkers of acute cellular rejection after liver transplantation by protein microarray. Transplant Direct. 2016;2:e118.
    1. Inkinen K, Lahesmaa R, Brandt A, et al. DNA microarray-based gene expression profiles of cytomegalovirus infection and acute rejection in liver transplants. Transplant Proc. 2005;37(2):1227-1229.
    1. Muffak-Granero K, Bueno P, Olmedo C, et al. Study of gene expression profile in liver transplant recipients with hepatitis C virus. Transplant Proc. 2008;40(9):2971-2974.
    1. Šeda O, Cahová M, Míková I, et al. Hepatic gene expression profiles differentiate steatotic and non-steatotic grafts in liver transplant recipients. Front Endocrinol (Lausanne). 2019;10:270.
    1. Londoño M-C, Souza LN, Lozano J-J, et al. Molecular profiling of subclinical inflammatory lesions in long-term surviving adult liver transplant recipients. J Hepatol. 2018;69(3):626-634.
    1. Lozano JJ, Pallier A, Martinez-Llordella M, et al. Comparison of transcriptional and blood cell-phenotypic markers between operationally tolerant liver and kidney recipients. Am J Transplant. 2011;11(9):1916-1926.
    1. Spivey TL, Uccellini L, Ascierto M, et al. Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med. 2011;9:174.
    1. Halloran PF, Venner JM, Madill-Thomsen KS, et al. Review: the transcripts associated with organ allograft rejection. Am J Transplant. 2018;18(4):785-795.
    1. Halloran PF, Potena L, Van Huyen J-P, et al. Building a tissue-based molecular diagnostic system in heart transplant rejection: the heart molecular microscope diagnostic (MMDx) system. J Heart Lung Transplant. 2017;36(11):1192-1200.
    1. Loupy A, Duong Van Huyen JP, Hidalgo L, et al. Gene expression profiling for the identification and classification of antibody-mediated heart rejection. Circulation. 2017;135(10):917-935.
    1. Halloran PF, Venner JM, Famulski KS. Comprehensive analysis of transcript changes associated with allograft rejection: combining universal and selective features. Am J Transplant. 2017;17(7):1754-1769.
    1. ATAGC. Gene Lists 2019. . Accessed January 10, 2020.
    1. Martínez-Llordella M, Puig-Pey I, Orlando G, et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant. 2007;7(2):309-319.
    1. Bonaccorsi-Riani E, Pennycuick A, Londoño M-C, et al. Molecular characterization of acute cellular rejection occurring during intentional immunosuppression withdrawal in liver transplantation. Am J Transplant. 2016;16(2):484-496.
    1. Einecke G, Reeve J, Mengel M, et al. Expression of B cell and immunoglobulin transcripts is a feature of inflammation in late allografts. Am J Transplant. 2008;8(7):1434-1443.
    1. Mengel M, Sis B, Kim D, et al. The molecular phenotype of heart transplant biopsies: relationship to histopathological and clinical variables. Am J Transplant. 2010;10(9):2105-2115.
    1. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage-associated molecular patterns (DAMPs). Am J Transplant. 2016;16(12):3338-3361.
    1. Hidalgo LG, Sellares J, Sis B, Mengel M, Chang J, Halloran PF. Interpreting NK cell transcripts versus T cell transcripts in renal transplant biopsies. Am J Transplant. 2012;12(5):1180-1191.
    1. Einecke G, Sis B, Reeve J, et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am J Transplant. 2009;9(11):2520-2531.
    1. Famulski KS, Einecke G, Reeve J, et al. Changes in the transcriptome in allograft rejection: IFN-γ induced transcripts in mouse kidney allografts. Am J Transplant. 2006;6(6):1342-1354.
    1. Famulski KS, Broderick G, Einecke G, et al. Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant. 2007;7(11):2483-2495.
    1. Famulski KS, de Freitas DG, Kreepala C, et al. Molecular phenotypes of acute kidney injury in human kidney transplants. J Am Soc Nephrol. 2012;23(5):948-958.
    1. Mengel M, Reeve J, Bunnag S, et al. Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am J Transplant. 2009;9(1):169-178.
    1. Hidalgo LG, Einecke G, Allanach K, et al. The transcriptome of human cytotoxic T cells: measuring the burden of CTL-associated transcripts in human kidney transplants. Am J Transplant. 2008;8(3):637-646.
    1. RCT. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. . Accessed January 11, 2020.
    1. Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Soft. 2008;25(1):18.
    1. Reeve J, Böhmig GA, Eskandary F, et al. Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes. JCI Insight. 2017;2(12):e94197.
    1. Eugster MJA, Leisch F. From spider-man to hero - archetypal analysis in R. J Stat Soft. 2009;30(8):1-23.
    1. Zeileis A, Grothendieck G. Zoo: S3 Infrastructure for regular and irregular time series. J Stat Softw. 2005;14:1-27.
    1. Demetrius AJ, Batts KP, Dhillon AP, et al. Banff schema for grading liver allograft rejection: an international consensus document. Hepatology. 1997;25(3):658-663.
    1. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;2011(12):77.
    1. Feng S, Bucuvalas JC, Demetris AJ, et al. Evidence of chronic allograft injury in liver biopsies from long-term pediatric recipients of liver transplants. Gastroenterology. 2018;155(6):1838-1851.e7.
    1. Dogan N, Husing-Kabar A, Schmidt HH, Cicinnati VR, Beckebaum S, Kabar I. Acute allograft rejection in liver transplant recipients: incidence, risk factors, treatment success, and impact on graft failure. J Int Med Res. 2018;46(9):3979-3990.
    1. Venner JM, Famulski KS, Badr D, Hidalgo LG, Chang J, Halloran PF. Molecular landscape of T cell-mediated rejection in human kidney transplants: prominence of CTLA4 and PD ligands. Am J Transplant. 2014;14(11):2565-2576.
    1. Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver International. 2019;39:788-801.
    1. Faggioli F, Palagano E, Di Tommaso L, et al. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology. 2018;67(5):1970-1985.
    1. Novobrantseva TI, Majeau GR, Amatucci A, et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest. 2005;115(11):3072-3082.
    1. Jucaud V, Shaked A, DesMarais M, et al. Prevalence and impact of de novo donor-specific antibodies during a multicenter immunosuppression withdrawal trial in adult liver transplant recipients. Hepatology. 2019;69(3):1273-1286.
    1. Kaneku H, O'Leary JG, Taniguchi M, Susskind BM, Terasaki PI, Klintmalm GB. Donor-specific human leukocyte antigen antibodies of the immunoglobulin G3 subclass are associated with chronic rejection and graft loss after liver transplantation. Liver Transpl. 2012;18(8):984-992.
    1. O’Leary JG, Kaneku H, Susskind BM, et al. High mean fluorescence intensity donor-specific anti-HLA antibodies associated with chronic rejection postliver transplant. Am J Transplant. 2011;11(9):1868-1876.
    1. Shaked A, DesMarais MR, Kopetskie H, et al. Outcomes of immunosuppression minimization and withdrawal early after liver transplantation. Am J Transplant. 2019;19(5):1397-1409.
    1. Sellarés J, Reeve J, Loupy A, et al. Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am J Transplant. 2013;13(4):971-983.
    1. Reeve J, Sellarés J, Mengel M, et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant. 2013;13(3):645-655.

Source: PubMed

3
Sottoscrivi