The molecular phenotypes of injury, steatohepatitis, and fibrosis in liver transplant biopsies in the INTERLIVER study

Katelynn S Madill-Thomsen, Marwan Abouljoud, Chandra Bhati, Michał Ciszek, Magdalena Durlik, Sandy Feng, Bartosz Foroncewicz, Iman Francis, Michał Grąt, Krzysztof Jurczyk, Goran Klintmalm, Maciej Krasnodębski, Geoff McCaughan, Rosa Miquel, Aldo Montano-Loza, Dilip Moonka, Krzysztof Mucha, Marek Myślak, Leszek Pączek, Agnieszka Perkowska-Ptasińska, Grzegorz Piecha, Trevor Reichman, Alberto Sanchez-Fueyo, Olga Tronina, Marta Wawrzynowicz-Syczewska, Andrzej Więcek, Krzysztof Zieniewicz, Philip F Halloran, Katelynn S Madill-Thomsen, Marwan Abouljoud, Chandra Bhati, Michał Ciszek, Magdalena Durlik, Sandy Feng, Bartosz Foroncewicz, Iman Francis, Michał Grąt, Krzysztof Jurczyk, Goran Klintmalm, Maciej Krasnodębski, Geoff McCaughan, Rosa Miquel, Aldo Montano-Loza, Dilip Moonka, Krzysztof Mucha, Marek Myślak, Leszek Pączek, Agnieszka Perkowska-Ptasińska, Grzegorz Piecha, Trevor Reichman, Alberto Sanchez-Fueyo, Olga Tronina, Marta Wawrzynowicz-Syczewska, Andrzej Więcek, Krzysztof Zieniewicz, Philip F Halloran

Abstract

To extend previous molecular analyses of rejection in liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov #NCT03193151), the present study aimed to define the gene expression selective for parenchymal injury, fibrosis, and steatohepatitis. We analyzed genome-wide microarray measurements from 337 liver transplant biopsies from 13 centers. We examined expression of genes previously annotated as increased in injury and fibrosis using principal component analysis (PCA). PC1 reflected parenchymal injury and related inflammation in the early posttransplant period, slowly regressing over many months. PC2 separated early injury from late fibrosis. Positive PC3 identified a distinct mildly inflamed state correlating with histologic steatohepatitis. Injury PCs correlated with liver function and histologic abnormalities. A classifier trained on histologic steatohepatitis predicted histologic steatohepatitis with cross-validated AUC = 0.83, and was associated with pathways reflecting metabolic abnormalities distinct from fibrosis. PC2 predicted histologic fibrosis (AUC = 0.80), as did a molecular fibrosis classifier (AUC = 0.74). The fibrosis classifier correlated with matrix remodeling pathways with minimal overlap with those selective for steatohepatitis, although some biopsies had both. Genome-wide assessment of liver transplant biopsies can not only detect molecular changes induced by rejection but also those correlating with parenchymal injury, steatohepatitis, and fibrosis, offering potential insights into disease mechanisms for primary diseases.

Keywords: basic (laboratory) research/science; biopsy; liver transplantation/hepatology; microarray/gene array; rejection.

© 2021 The American Society of Transplantation and the American Society of Transplant Surgeons.

References

REFERENCES

    1. Kwong AJ, Kim WR, Lake JR, et al. OPTN/SRTR 2019 annual data report: liver. Am J Transplant. 2021;21(suppl 2):208-315.
    1. Mofrad P, Contos MJ, Haque M, et al. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology. 2003;37(6):1286-1292.
    1. Sorrentino P, Tarantino G, Conca P, et al. Silent non-alcoholic fatty liver disease-a clinical-histological study. J Hepatol. 2004;41(5):751-757.
    1. Newsome PN, Sasso M, Deeks JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 2020;5(4):362-373.
    1. Wadström J, Ericzon B-G, Halloran PF, et al. Advancing transplantation: new questions, new possibilities in kidney and liver transplantation. Transplantation. 2017;101(Suppl 2S):S1-S41.
    1. Selzner N, Grant DR, Shalev I, Levy GA. The immunosuppressive pipeline: meeting unmet needs in liver transplantation. Liver Transpl. 2010;16(12):1359-1372.
    1. Busuttil RW. Predicting early hepatic graft failure-the quest continues. JAMA Surg. 2020;155(12):e204593.
    1. Bhat M, Rollet-Kurhajec KC, Bhat A, et al. Incidence and predictors of advanced liver fibrosis by a validated serum biomarker in liver transplant recipients. Can J Gastroenterol Hepatol. 2017;2017:4381864.
    1. Crespo G, Lens S, Gambato M, et al. Liver stiffness 1 year after transplantation predicts clinical outcomes in patients with recurrent hepatitis C. Am J Transplant. 2014;14(2):375-383.
    1. Uslusoy HS, Nak SG, Gulten M, Biyikli Z. Non-alcoholic steatohepatitis with normal aminotransferase values. World J Gastroenterol. 2009;15(15):1863-1868.
    1. Friis-Liby I, Aldenborg F, Jerlstad P, Rundstrom K, Bjornsson E. High prevalence of metabolic complications in patients with non-alcoholic fatty liver disease. Scand J Gastroenterol. 2004;39(9):864-869.
    1. Angelico F, Del ben M, Conti R, et al. Non-alcoholic fatty liver syndrome: a hepatic consequence of common metabolic diseases. J Gastroenterol Hepatol. 2003;18(5):588-594.
    1. Pagano G, Pacini G, Musso G, et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology. 2002;35(2):367-372.
    1. Marchesini G, Brizi M, Morselli-Labate AM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med. 1999;107(5):450-455.
    1. Bzowej NH. Nonalcoholic steatohepatitis: the new frontier for liver transplantation. Curr Opin Organ Transplant. 2018;23(2):169-174.
    1. Mikolasevic I, Filipec-Kanizaj T, Mijic M, et al. Nonalcoholic fatty liver disease and liver transplantation - Where do we stand? World J Gastroenterol. 2018;24(14):1491-1506.
    1. Dyson JK, Anstee QM, McPherson S. Non-alcoholic fatty liver disease: a practical approach to diagnosis and staging. Frontline Gastroenterol. 2014;5(3):211-218.
    1. Enomoto H, Bando Y, Nakamura H, Nishiguchi S, Koga M. Liver fibrosis markers of nonalcoholic steatohepatitis. World J Gastroenterol. 2015;21(24):7427-7435.
    1. Verma S, Jensen D, Hart J, Mohanty SR. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver Int. 2013;33(9):1398-1405.
    1. Siddiqui MS, Charlton M. Liver transplantation for alcoholic and nonalcoholic fatty liver disease: pretransplant selection and posttransplant management. Gastroenterology. 2016;150(8):1849-1862.
    1. Govaere O, Cockell S, Tiniakos D, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med. 2020;12(572).
    1. Reeve J, Böhmig GA, Eskandary F, et al. Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers. Am J Transplant. 2019;19(10):2719-2731.
    1. Madill-Thomsen KS, Wiggins RC, Eskandary F, Bohmig GA, Halloran PF. The effect of cortex/medulla proportions on molecular diagnoses in kidney transplant biopsies: rejection and injury can be assessed in medulla. Am J Transplant. 2017;17(8):2117-2128.
    1. Halloran PF, Reeve J, Akalin E, et al. Real time central assessment of kidney transplant indication biopsies by microarrays: the INTERCOMEX study. Am J Transplant. 2017;17(11):2851-2862.
    1. Reeve J, Kim DH, Crespo-Leiro MG, et al. Molecular diagnosis of rejection phenotypes in 889 heart transplant biopsies: the INTERHEART study. J Heart Lung Transplant. 2018;37(4):S27.
    1. Parkes M, Reeve J, Kim D, et al. molecular assessment of heart transplant biopsies: emergence of the injury dimension. Transplantation. 2018;102(Supplement 7):S62-S63.
    1. Parkes M, Halloran K, Famulski K, Halloran P, Grp IS. Molecular phenotypes of injury and rejection in lung transplant transbronchial biopsies. Am J Transplant. 2018;18(S4):274-275.
    1. Halloran K, Parkes MD, Timofte I, et al. Molecular T-cell mediated rejection in transbronchial and mucosal lung transplant biopsies is associated with future risk of graft loss. J Heart Lung Transplant. 2020;39(12):1327-1337.
    1. Madill-Thomsen K, Abouljoud M, Bhati C, et al. The molecular diagnosis of rejection in liver transplant biopsies: first results of the INTERLIVER study. Am J Transplant. 2020;20(8):2156-2172.
    1. Halloran KM, Parkes MD, Chang J, et al. Molecular assessment of rejection and injury in lung transplant biopsies. J Heart Lung Transplant. 2019;38(5):504-513.
    1. Parkes MD, Aliabadi AZ, Cadeiras M, et al. An integrated molecular diagnostic system for rejection and injury in heart transplant biopsies. J Heart Lung Transplant. 2019;38(6):636-646.
    1. Einecke G, Reeve J, Gupta G, et al. Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: Importance of parenchymal injury but not disease activity. Am J Transplant. 2021;21(4):1391-1401.
    1. Famulski KS, de Freitas DG, Kreepala C, et al. Molecular phenotypes of acute kidney injury in human kidney transplants. J Am Soc Nephrol. 2012;23(5):948-958.
    1. ATAGC Gene Lists. Published 2019. Accessed October 17, 2021.
    1. Famulski KS, Einecke G, Sis B, et al. Defining the canonical form of T-cell-mediated rejection in human kidney transplants. Am J Transplant. 2010;10(4):810-820.
    1. Einecke G, Reeve J, Mengel M, et al. Expression of B cell and immunoglobulin transcripts is a feature of inflammation in late allografts. Am J Transplant. 2008;8(7):1434-1443.
    1. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage-associated molecular patterns (DAMPs). Am J Transplant. 2016;16(12):3338-3361.
    1. Heil M, Land WG. Danger signals - damaged-self recognition across the tree of life. Front Plant Sci. 2014;5:578.
    1. Famulski KS, Broderick G, Einecke G, et al. Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant. 2007;7(11):2483-2495.
    1. Halloran PF, Potena L, Van Huyen J-P, et al. Building a tissue-based molecular diagnostic system in heart transplant rejection: the heart molecular microscope diagnostic (MMDx) system. J Heart Lung Transplant. 2017;36(11):1192-1200.
    1. Halloran PF, Venner JM, Famulski KS. Comprehensive analysis of transcript changes associated with allograft rejection: combining universal and selective features. Am J Transplant. 2017;17(7):1754-1769.
    1. R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. Updated 2019. Accessed October 17, 2021.
    1. Lê S, Josse J, Husson F. FactoMineR: AnRPackage for multivariate analysis. J Stat Softw. 2008;25(1):18.
    1. Famulski KS, de Freitas DG, Kreepala C, et al. Molecular phenotypes of acute kidney injury in kidney transplants. J Am Soc Nephrol. 2012;23(5):948-958.
    1. Einecke G, Famulski KS, Reeve J, et al. The Tissue response to injury in kidney allografts: the balance between injury pathways determines outcome after injury. Am J Transplant. 2011;11(s2):57.
    1. Famulski KF, de Freitas DG, Kreepala C, et al. The acute kidney injury signal is induced in kidney transplants by chronic diseases and predicts progression to failure. Am J Transplant. 2012;12(s3):385-386.
    1. Famulski KS, Reeve J, de Freitas DG, Kreepala C, Chang J, Halloran PF. Kidney transplants with progressing chronic diseases express high levels of acute kidney injury transcripts. Am J Transplant. 2013;13(3):634-644.
    1. Halloran PF, Reeve J, Aliabadi AZ, et al. Exploring the cardiac response to injury in heart transplant biopsies. JCI Insight. 2018;3(20):e123674.
    1. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287.
    1. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.
    1. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448-3449.
    1. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape stringapp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18(2):623-632.
    1. Zeileis A, Grothendieck G. zoo: S3 infrastructure for regular and irregular time series. J Stat Softw. 2005;14(6):1-27.
    1. Reeve J, Böhmig GA, Eskandary F, et al. Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes. JCI Insight. 2017;2(12):e94197.
    1. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling [computer program]. R package version 1.4.0. . Published 2019. Accessed September 16, 2021.
    1. rms: regression modeling strategies [computer program]. R package version 6.0-0. . Published 2020. Accessed September 16, 2021.
    1. Halloran PF, Böhmig GA, Bromberg JS, et al. Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. Am J Transplant. 2021;21(5):1725-1739.
    1. Venner JM, Famulski KS, Reeve J, Chang J, Halloran PF. Relationships among injury, fibrosis, and time in human kidney transplants. JCI Insight. 2016;1(1):e85323.
    1. Dali-Youcef N, Vix M, Costantino F, et al. Interleukin-32 contributes to human nonalcoholic fatty liver disease and insulin resistance. Hepatol Commun. 2019;3(9):1205-1220.
    1. Paradis V, Dargere D, Bieche Y, et al. SCG10 expression on activation of hepatic stellate cells promotes cell motility through interference with microtubules. Am J Pathol. 2010;177(4):1791-1797.
    1. Bièche I, Maucuer A, Laurendeau I, et al. Expression of stathmin family genes in human tissues: non-neural-restricted expression for SCLIP. Genomics. 2003;81(4):400-410.
    1. Asselah T, Bièche I, Laurendeau I, et al. Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology. 2005;129(6):2064-2075.
    1. Gerhard GS, Hanson A, Wilhelmsen D, et al. AEBP1 expression increases with severity of fibrosis in NASH and is regulated by glucose, palmitate, and miR-372-3p. PLoS One. 2019;14(7):e0219764.
    1. Ramnath D, Irvine KM, Lukowski SW, et al. Hepatic expression profiling identifies steatosis-independent and steatosis-driven advanced fibrosis genes. JCI Insight. 2018;3(14).
    1. Hotta K, Kikuchi M, Kitamoto T, et al. Identification of core gene networks and hub genes associated with progression of non-alcoholic fatty liver disease by RNA sequencing. Hepatol Res. 2017;47(13):1445-1458.
    1. Wu B, Rockel JS, Lagares D, Kapoor M. Ephrins and Eph receptor signaling in tissue repair and fibrosis. Curr Rheumatol Rep. 2019;21(6):23.
    1. Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):145-159.
    1. White PJ, McGarrah RW, Grimsrud PA, et al. The BCKDH kinase and phosphatase Integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 2018;27(6):1281-1293 e1287.
    1. Paradis V, Bièche I, Dargère D, et al. Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol. 2003;163(2):733-741.
    1. Ramirez A, Vazquez-Sanchez AY, Carrion-Robalino N, Camacho J. Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxid Med Cell Longev. 2016;2016:3928714.
    1. Reeve J, Sellarés J, Mengel M, et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant. 2013;13(3):645-655.
    1. Sellarés J, Reeve J, Loupy A, et al. Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am J Transplant. 2013;13(4):971-983.
    1. Famulski KS, Halloran PF. Molecular events in kidney ageing. Curr Opin Nephrol Hypertens. 2005;14(3):243-248.
    1. Halloran PF, Reeve JP, Pereira AB, Hidalgo LG, Famulski KS. Antibody-mediated rejection, T cell-mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int. 2014;85(2):258-264.

Source: PubMed

3
Sottoscrivi