Virtual reality stimulation to reduce the incidence of delirium in critically ill patients: study protocol for a randomized clinical trial

Aileen C Naef, Marie-Madlen Jeitziner, Stephan M Gerber, Béatrice Jenni-Moser, René M Müri, Stephan M Jakob, Tobias Nef, Matthias Hänggi, Aileen C Naef, Marie-Madlen Jeitziner, Stephan M Gerber, Béatrice Jenni-Moser, René M Müri, Stephan M Jakob, Tobias Nef, Matthias Hänggi

Abstract

Background: Delirium has been long considered as a major contributor to cognitive impairments and increased mortality following a critical illness. Pharmacologic and non-pharmacologic strategies are used against delirium in the intensive care unit (ICU), despite these strategies remaining controversial. Previous studies have shown the feasibility of using virtual reality within the ICU setting, and we propose to use this technology to investigate the effect of immersive virtual reality stimulation on the incidence of delirium in the ICU. Moreover, we propose to use motion sensors to determine if patient movement patterns can lead to early prediction of delirium onset.

Methods: This study is conducted as a randomized clinical trial. A total of 920 critically ill patients in the ICU will participate. The control group will receive standard ICU care, whereas the intervention group will, in addition to the standard ICU care, receive relaxing 360-degree immersive virtual reality content played inside a head-mounted display with noise-cancelling headphones, three times a day. The first 100 patients, regardless of their group, will additionally have their movement patterns recorded using wearable and ambient sensors. Follow-up measurements will take place 6 months after discharge from the ICU.

Discussion: Delirium is widely present within the ICU setting but lacks validated prevention and treatment strategies. By providing patients with virtual reality stimulation presented inside a head-mounted display and noise-cancelling headphones, participants may be isolated from disturbances on an ICU. It is believed that by doing so, the incidence of delirium will be decrease among these patients. Moreover, identifying movement patterns associated with delirium would allow for early detection and intervention, which may further improve long-term negative outcomes associated with delirium during critical care.

Trial registration: ClinicalTrials.gov NCT04498585 . Registered on August 3, 2020.

Keywords: Critical care; Delirium; ICU; Intensive care; Movement patterns; Randomized controlled trial; Virtual reality.

Conflict of interest statement

The Department of Intensive Care Medicine has, or has had in the past, research and development/consulting contracts with Edwards Lifesciences Services GmbH, Phagenesis Limited, and Nestlé. The money was paid into a departmental fund, and none of the authors received any financial gain. The Department of Intensive Care Medicine has received in the past unrestricted educational grants from the following organizations for organizing bi-annual postgraduate courses in the fields of critical care ultrasound, management of ECMO, and mechanical ventilation: Pierre Fabre Pharma AG (formerly known as RobaPharm), Pfizer AG, Bard Medica S.A., Abbott AG, Anandic Medical Systems, PanGas AG Healthcare, Orion Pharma, Bracco, Edwards Lifesciences AG, Hamilton Medical AG, Fresenius Kabi (Schweiz) AG, Getinge Group Maquet AG, Dräger Schweiz AG, and Teleflex Medical GmbH.

None of the authors has any personal conflicts of interest to disclose.

Figures

Fig. 1
Fig. 1
Schedule of enrolment, intervention, and assessments. Arrows represent continuous measurements, and X’s represent an assessment or intervention provided at a specific time point. One asterisk indicates that whenever possible, informed consent will be obtained directly from the patient. If the patient is unable to provide informed consent, we will ask the patients’ relatives and/or an authorized representative for the study consent. Two asterisks indicate that we will ask the patients’ relatives at the earliest possible date, with questions regarding the week prior to arrival at the ICU

References

    1. Chanques G, Ely EW, Garnier O, Perrigault F, Eloi A, Carr J, et al. The 2014 updated version of the Confusion Assessment Method for the intensive care unit compared to the 5th version of the Diagnostic and Statistical Manual of Mental Disorders and other current methods used by intensivists. Ann Intensive Care. 2018;8(1):33. doi: 10.1186/s13613-018-0377-7.
    1. Thomason JW, Shintani A, Peterson JF, Pun BT, Jackson JC, Ely EW. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. Crit Care. 2005;9(4):R375. doi: 10.1186/cc3729.
    1. van den Boogaard M, Schoonhoven L, Evers AW, van der Hoeven JG, van Achterberg T, Pickkers P. Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. Crit Care Med. 2012;40(1):112–118. doi: 10.1097/CCM.0b013e31822e9fc9.
    1. Slooter AJ, Van De Leur RR, Zaal IJ. Delirium in critically ill patients. In: Wijdicks E, Kramer AH, editors. Handbook of clinical neurology [internet]: USA, Elsevier; 2017. p. 449–66. 10.1016/B978-0-444-63599-0.00025-9. [cited 2020 May 13].
    1. Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJ, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–e873. doi: 10.1097/CCM.0000000000003299.
    1. Van den Boogaard M, Schoonhoven L, Van der Hoeven JG, Van Achterberg T, Pickkers P. Incidence and short-term consequences of delirium in critically ill patients: a prospective observational cohort study. Int J Nurs Stud. 2012;49(7):775–783. doi: 10.1016/j.ijnurstu.2011.11.016.
    1. Gaete Ortega DG, Papathanassoglou E, Norris CM. The lived experience of delirium in intensive care unit patients: a meta-ethnography. Aust Crit Care. 2020;33(2):193–202. doi: 10.1016/j.aucc.2019.01.003.
    1. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–1316. doi: 10.1056/NEJMoa1301372.
    1. Serafim RB, Bozza FA, Soares M, do Brasil PE, Tura BR, Ely EW, et al. Pharmacologic prevention and treatment of delirium in intensive care patients: a systematic review. J Crit Care. 2015;30(4):799–807. doi: 10.1016/j.jcrc.2015.04.005.
    1. Zayed Y, Barbarawi M, Kheiri B, Banifadel M, Haykal T, Chahine A, et al. Haloperidol for the management of delirium in adult intensive care unit patients: a systematic review and meta-analysis of randomized controlled trials. J Crit Care. 2019;50:280–286. doi: 10.1016/j.jcrc.2019.01.009.
    1. Bannon L, McGaughey J, Verghis R, Clarke M, McAuley DF, Blackwood B. The effectiveness of non-pharmacological interventions in reducing the incidence and duration of delirium in critically ill patients: a systematic review and meta-analysis. Intensive Care Med. 2019;45(1):1–2. doi: 10.1007/s00134-018-5452-x.
    1. Trogrlić Z, van der Jagt M, Bakker J, Balas MC, Ely EW, van der Voort PH, et al. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Crit Care. 2015;19(1):157. doi: 10.1186/s13054-015-0886-9.
    1. Gerber SM, Jeitziner MM, Knobel SE, Mosimann UP, Müri RM, Jakob SM, et al. Perception and performance on a virtual reality cognitive stimulation for use in the intensive care unit: a non-randomized trial in critically ill patients. Front Med. 2019;6. 10.3389/fmed.2019.00287.
    1. Monge JP, López G, Guerrero LA. Supporting phobia treatment with virtual reality: systematic desensitization using oculus rift. In: Duffy VG, Lightner N, editors. Advances in human factors and ergonomics in healthcare: proceedings of the AHFE 2016 international conference on human factors and ergonomics in healthcare. Florida, USA: Springer; 2017. pp. 391–401.
    1. Li A, Montaño Z, Chen VJ, Gold JI. Virtual reality and pain management: current trends and future directions. Pain Manag. 2011;1(2):147–157. doi: 10.2217/pmt.10.15.
    1. Shokur S, Gallo S, Moioli RC, Donati AR, Morya E, Bleuler H, et al. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci Rep. 2016;6(1):1–4. doi: 10.1038/srep32293.
    1. Gerber SM, Jeitziner MM, Wyss P, Chesham A, Urwyler P, Müri RM, et al. Visuo-acoustic stimulation that helps you to relax: a virtual reality setup for patients in the intensive care unit. Sci Rep. 2017;7(1):1–0. doi: 10.1038/s41598-017-13153-1.
    1. Gerber SM, Jeitziner MM, Sänger SD, Knobel SE, Marchal-Crespo L, Müri RM, et al. Comparing the relaxing effects of different virtual reality environments in the intensive care unit: observational study. JMIR Perioper Med. 2019;2(2):e15579. doi: 10.2196/15579.
    1. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27(5):859–864. doi: 10.1007/s001340100909.
    1. Boettger S, Garcia Nuñez D, Meyer R, Richter A, Rudiger A, Schubert M, et al. Screening for delirium with the intensive care delirium screening checklist (ICDSC): a re-evaluation of the threshold for delirium. Swiss Med Wkly. 2018;148:w14597. doi: 10.4414/smw.2018.14597.
    1. Sternbach GL. The Glasgow coma scale. J Emerg Med. 2000;19(1):67–71. doi: 10.1016/S0736-4679(00)00182-7.
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O'Neal PV, Keane KA, et al. The Richmond Agitation–Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–1344. doi: 10.1164/rccm.2107138.
    1. Ahlers SJ, van Gulik L, van der Veen AM, van Dongen HP, Bruins P, Belitser SV, et al. Comparison of different pain scoring systems in critically ill patients in a general ICU. Crit Care. 2008;12(1):R15. doi: 10.1186/cc6789.
    1. Jeitziner MM, Schwendimann R, Hamers JP, Rohrer O, Hantikainen V, Jakob SM. Assessment of pain in sedated and mechanically ventilated patients: an observational study. Acta Anaesthesiol Scand. 2012;56(5):645–654. doi: 10.1111/j.1399-6576.2012.02660.x.
    1. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, Jr, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. Jama. 2004;291(14):1753–1762. doi: 10.1001/jama.291.14.1753.
    1. Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–1097. doi: 10.1164/rccm.200904-0537OC.
    1. Bellelli G, Speciale S, Morghen S, Torpilliesi T, Turco R, Trabucchi M. Are fluctuations in motor performance a diagnostic sign of delirium? J Am Med Dir Assoc. 2011;12(8):578–583. doi: 10.1016/j.jamda.2010.04.010.
    1. Raj R, Ussavarungsi K, Nugent K. Accelerometer-based devices can be used to monitor sedation/agitation in the intensive care unit. J Crit Care. 2014;29(5):748–752. doi: 10.1016/j.jcrc.2014.05.014.
    1. Brooke J. Chapter twenty one - SUS-A quick and dirty usability scale. In: Jordan PW, McClelland IL, Weerdmeester B, editors. Usability evaluation in industry. Boca Raton: CRC Press; 1996. pp. 189–194.
    1. Boettger S, Meyer R, Richter A, Fernandez SF, Rudiger A, Schubert M, et al. Screening for delirium with the intensive care delirium screening checklist (ICDSC): symptom profile and utility of individual items in the identification of delirium dependent on the level of sedation. Palliat Support Care. 2019;17(1):74–81. doi: 10.1017/S1478951518000202.
    1. Bounds M, Kram S, Speroni KG, Brice K, Luschinski MA, Harte S, et al. Effect of ABCDE bundle implementation on prevalence of delirium in intensive care unit patients. American J Crit Care. 2016;25(6):535–544. doi: 10.4037/ajcc2016209.
    1. Swiss Society of Intensive Care Medicine . Key figures 2018 [internal report] Bern (CH): Swiss Society of Intensive Care Medicine; 2019.
    1. Boettger S, Nuñez DG, Meyer R, Richter A, Fernandez SF, Rudiger A, et al. Delirium in the intensive care setting: a reevaluation of the validity of the CAM–ICU and ICDSC versus the DSM–IV–TR in determining a diagnosis of delirium as part of the daily clinical routine. Palliat Support Care. 2017;15(6):675–683. doi: 10.1017/S1478951516001176.
    1. Radtke FM, Franck M, Oppermann S, Lütz A, Seeling M, Heymann A, et al. The intensive care delirium screening checklist (ICDSC)--translation and validation of intensive care delirium checklist in accordance with guidelines. Anasthesiol Intensivmed Notfallmed Schmerzther. 2009;44(2):80–86. doi: 10.1055/s-0029-1202647.
    1. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS) Jama. 2003;289(22):2983–2991. doi: 10.1001/jama.289.22.2983.
    1. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet. 1974;304(7872):81–84. doi: 10.1016/S0140-6736(74)91639-0.
    1. Prasad K. The Glasgow coma scale: a critical appraisal of its clinimetric properties. J Clin Epidemiol. 1996;49(7):755–763. doi: 10.1016/0895-4356(96)00013-3.
    1. Herdman M, Gudex C, Lloyd A, Janssen MF, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L) Qual Life Res. 2011;20(10):1727–1736. doi: 10.1007/s11136-011-9903-x.
    1. Linacre JM, Heinemann AW, Wright BD, Granger CV, Hamilton BB. The structure and stability of the functional independence measure. Arch Phys Med Rehabil. 1994;75(2):127–132. doi: 10.1016/0003-9993(94)90384-0.
    1. Ottenbacher KJ, Hsu Y, Granger CV, Fiedler RC. The reliability of the functional independence measure: a quantitative review. Arch Phys Med Rehabil. 1996;77(12):1226–1232. doi: 10.1016/S0003-9993(96)90184-7.
    1. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. Cmaj. 2005;173(5):489–495. doi: 10.1503/cmaj.050051.
    1. Dodds TA, Martin DP, Stolov WC, Deyo RA. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch Phys Med Rehabil. 1993;74(5):531–536. doi: 10.1016/0003-9993(93)90119-U.
    1. Stineman MG, Shea JA, Jette A, Tassoni CJ, Ottenbacher KJ, Fiedler R, et al. The functional independence measure: tests of scaling assumptions, structure, and reliability across 20 diverse impairment categories. Arch Phys Med Rehabil. 1996;77(11):1101–1108. doi: 10.1016/S0003-9993(96)90130-6.
    1. Shears M, Takaoka A, Rochwerg B, Bagshaw SM, Johnstone J, Holding A, et al. Assessing frailty in the intensive care unit: a reliability and validity study. J Crit Care. 2018;45:197–203. doi: 10.1016/j.jcrc.2018.02.004.
    1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Mast BT, Gerstenecker A. Screening instruments and brief batteries for dementia. In: Lichtenberg PA, editor. Handbook of assessment in clinical gerontology. 2. Cambridge: Academic Press; 2010. pp. 503–530.
    1. Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Intl Journal of Human–Computer Interaction. 2008;24(6):574–594. doi: 10.1080/10447310802205776.
    1. Sauro J, Lewis JR. Chapter 8–standardized usability questionnaires. In: Sauro J, Lewis JR, editors. Quantifying the user experience. 2. Burlington: Morgan Kaufmann; 2016. pp. 185–248.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin JA, Doré CJ. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.

Source: PubMed

3
Sottoscrivi