Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children

Bennett T Amaechi, Parveez Ahamed AbdulAzees, Dina Ossama Alshareif, Marina Adel Shehata, Patrícia Paula de Carvalho Sampaio Lima, Azadeh Abdollahi, Parisa Samadi Kalkhorani, Veronica Evans, Bennett T Amaechi, Parveez Ahamed AbdulAzees, Dina Ossama Alshareif, Marina Adel Shehata, Patrícia Paula de Carvalho Sampaio Lima, Azadeh Abdollahi, Parisa Samadi Kalkhorani, Veronica Evans

Abstract

Objective: This in situ study compared the effectiveness of two toothpastes containing hydroxyapatite or 500 ppm fluoride in promoting remineralization and inhibiting caries development.

Materials and methods: Two enamel blocks (human primary teeth), one sound and one with artificially-produced caries lesion, were exposed to toothpaste containing either 10% hydroxyapatite or 500 ppm F- (amine fluoride) via intra-oral appliance worn by 30 adults in two-arm double blind randomized crossover study lasting 14 days per arm (ClinicalTrials.gov: NCT03681340). Baseline and post-test mineral loss and lesion depth (LD) were quantified using microradiography. One-sided t-test of one group mean was used for intragroup comparison (baseline vs. post-test), while two-sided t-test of two independent means was used to compare the two toothpaste groups.

Results: Pairwise comparison (baseline vs. test) indicated significant (p < 0.0001) remineralization and LD reduction by either toothpaste; however, when compared against each other, there was no statistically significant difference in remineralization or LD reduction between the two toothpastes. No demineralization could be observed in sound enamel blocks exposed to either toothpaste. While F- induced lesion surface lamination, HAP produced a more homogenous lesion remineralization.

Conclusions: 10% hydroxyapatite achieved comparable efficacy with 500 ppm F- in remineralizing initial caries and preventing demineralization. Thus the HAP toothpaste is confirmed to be equal to the fluoride toothpaste in this study.

Keywords: Oral diseases; Paediatric dentistry.

Conflict of interest statement

Competing interestsThe authors declare no competing interests.

© The Author(s) 2019.

Figures

Fig. 1
Fig. 1
Flow Diagram detailing the stepwise methodology. This is a crossover study so the 30 completers received the two intervention in a crossover design as phase I and II.
Fig. 2
Fig. 2
Representative microradiographic images of sound tooth tissue before (a) and after (b) intra-oral exposure for demineralization while the research subject is using Karex Kid’s toothpaste (10% HAP microclusters).
Fig. 3
Fig. 3
Representative microradiographic images of sound tooth tissue before (a) and after (b) intra-oral exposure for demineralization while the research subject is using Elmex Kid’s toothpaste (500 ppm fluoride as AMF).
Fig. 4
Fig. 4
Representative microradiographic images of enamel subsurface lesions (Initial caries lesions), before (a) and after (b) in situ remineralization via treatment with Karex Kid’s toothpaste (10% HAP microclusters).
Fig. 5
Fig. 5
Representative microradiographic images of enamel subsurface lesions (Initial caries lesions), before (a) and after (b) in situ remineralization via treatment with Elmex Kid’s toothpaste (500 ppm fluoride as AMF).

References

    1. Kassebaum NJ, et al. Global burden of untreated caries: a systematic review and metaregression. J. Dent. Res. 2015;94:650–658. doi: 10.1177/0022034515573272.
    1. Dye BA, et al. Trends in oral health status: United States, 1988-1994 and 1999-2004. Vital. Health Stat. 2007;248:1–92.
    1. Dye BA, Hsu KL, Afful J. Prevalence and measurement of dental caries in young children. Pediatr. Dent. 2015;37:200–216.
    1. Stookey GK. The effect of saliva on dental caries. J. Am. Dent. Assoc. 2008;139(suppl):11S–17S. doi: 10.14219/jada.archive.2008.0347.
    1. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 2010;89:1187–1197. doi: 10.1177/0022034510376046.
    1. Benson PE, et al. Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment. Cochrane Database Syst. Rev. 2013;12:CD003809.
    1. Walsh T, Worthington HV, Glenny AM, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev. 2019;4:CD007868.
    1. Shahid M. Regular supervised fluoride mouthrinse use by children and adolescents associated with caries reduction. Evid. Based Dent. 2017;18:11–12. doi: 10.1038/sj.ebd.6401217.
    1. Amaechi BT, van Loveren C. Fluorides and non-fluoride remineralization systems. Monogr. Oral. Sci. 2013;23:15–26. doi: 10.1159/000350458.
    1. Fontana M. Enhancing fluoride: clinical human studies of alternatives or boosters for caries management. Caries Res. 2016;50(suppl 1):22–37. doi: 10.1159/000439059.
    1. Bjarnason S, Finnbogason SY. Effect of different fluoride levels in dentifrice on the development of approximal caries. Caries Res. 1991;25:207–212. doi: 10.1159/000261369.
    1. ten Cate, J. M., Larsen, M. J., Pearce, E. I. F. & Fejerskov, O. Chemical interactions between the tooth and oral fluids. (eds Fejerskov, O. & Kidd, E. A. M.) In: Dental caries. 2nd edn. 49–69 (Blackwell Munksgaard, Oxford, 2008).
    1. Biesbrock AR, Faller RV, Bartizek RD, Court LK, McClanahan SF. Reversal of incipient and radiographic caries through the use of sodium and stannous fluoride dentifrices in a clinical trial. J. Clin. Dent. 1998;9:5–10.
    1. Schmidlin P, Zobrist K, Attin T, Wegehaupt F. In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides. J. Appl. Oral. Sci. 2016;24:31–36. doi: 10.1590/1678-775720150352.
    1. Ball IA. The ‘fluoride syndrome’: occult caries? Br. Dent. J. 1986;160:75–76. doi: 10.1038/sj.bdj.4805769.
    1. ten Cate JM, Arends J. Remineralization of artificial enamel lesions in vitro: III. A study of the deposition mechanism. Caries Res. 1980;14:351–358. doi: 10.1159/000260477.
    1. Zohoori FV, Maguire A. Are there good reasons for fluoride labelling of food and drink? Br. Dent. J. 2018;224:215–217. doi: 10.1038/sj.bdj.2018.123.
    1. Sharma D, et al. Fluoride: a review of pre-clinical and clinical studies. Environ. Toxicol. Pharm. 2017;56:297–313. doi: 10.1016/j.etap.2017.10.008.
    1. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13:330–338. doi: 10.1016/S1474-4422(13)70278-3.
    1. Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2019;53:284–295. doi: 10.1159/000493031.
    1. Meyer F, Amaechi BT, Fabritius HO, Enax J. Overview of calcium phosphates used in biomimetic oral care. Open Dent. J. 2018;31:406–423. doi: 10.2174/1874210601812010406.
    1. Enax J, Epple M. Synthetic hydroxyapatite as a biomimetic oral care agent. Oral. Health Prev. Dent. 2018;16:7–19.
    1. Hanning M, Hanning C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 2010;5:565–569. doi: 10.1038/nnano.2010.83.
    1. Fabritius-Vilpoux K, Enax J, Herbig M, Raabe D, Fabritius HO. Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro. Bioinspired Biomim. Nanobiomater. 2019;8:141–153. doi: 10.1680/jbibn.18.00035.
    1. Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011;39:430–437. doi: 10.1016/j.jdent.2011.03.008.
    1. Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed. Mater. 2009;4:034104. doi: 10.1088/1748-6041/4/3/034104.
    1. Najibfard K, Ramalingam K, Chedjieu I, Amaechi BT. Remineralization of early caries by nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011;22:139–143.
    1. Juntavee N, Juntavee A, Plongniras P. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration. Int J. Nanomed. 2018;8:2755–2765. doi: 10.2147/IJN.S165080.
    1. Kensche A, et al. Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral. Biol. 2017;80:18–26. doi: 10.1016/j.archoralbio.2017.03.013.
    1. Shimura N, et al. Field study on the anticaries effect of toothpaste containing hydroxyapatite (First Report) Shika Janaru. 1982;15:213–218.
    1. Kani T, et al. Effect of apatite-containing dentifrices on dental caries in school children. J. Dent. Hlth. 1989;39:104–109. doi: 10.5834/jdh.39.104.
    1. Schlagenhauf U, et al. Impact of a non-fluoridated microcrystalline hydroxyapatite dentifrice on enamel caries progression in highly caries-susceptible orthodontic patients: a randomized, controlled 6-month trial. J. Investig. Clin. Dent. 2019;10:e12399. doi: 10.1111/jicd.12399.
    1. Sreebny LM, Valdini A. Xerostomia. A neglected symptom. Arch. Intern. Med. 1987;147:1333–1337. doi: 10.1001/archinte.1987.00370070145022.
    1. de Josselin de Jong E, ten Bosch JJ, Noordman J. Optimised microcomputer guided quantitative microradiography on dental mineralised tissue slices. Phys. Med. Biol. 1987;32:887–899. doi: 10.1088/0031-9155/32/7/008.
    1. Amaechi BT, et al. Remineralization of eroded enamel by a NaF rinse containing a novel calcium phosphate agent in an in situ model: a pilot study. Clin. Cosmet. Investig. Dent. 2010;25:93–100.
    1. Karlinsey RL, et al. Remineralization potential of 5,000 ppm fluoride dentifrices evaluated. J. Dent. Oral. Hyg. 2010;02:1–6.
    1. Mensinkai PK, et al. In situ remineralization of white-spot enamel lesions by 500 and 1100 ppm F dentifrices. Clin. Oral. Investig. 2012;16:1007–1014. doi: 10.1007/s00784-011-0591-2.
    1. Tickotsky N, Petel R, Araki R, Moskovitz M. Caries progression rate in primary teeth: a retrospective study. J. Clin. Pediatr. Dent. 2017;41:358–361. doi: 10.17796/1053-4628-41.5.358.
    1. Stookey GK, et al. A critical review of the relative anticaries efficacy of sodium fluoride and sodium monofluorophosphate dentifrices. Caries Res. 1993;27:337–360. doi: 10.1159/000261563.
    1. Garcia-Godoy F. Clinical significance of the conclusions from the International Scientific Assembly on the comparative anticaries efficacy of sodium fluoride and sodium monofluorophosphate dentifrices. Am. J. Dent. 1993;6(Spec No):S4.
    1. Marinho VC, Higgins JP, Sheiham A, Logan S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2003;1:CD002278.
    1. Hellwig E, Altenburger M, Attin T, Lussi A, Buchalla W. Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations. Clin. Oral. Investig. 2010;14:265–269. doi: 10.1007/s00784-009-0290-4.
    1. Huang S, Gao S, Cheng L, Yu H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 2011;45:460–468. doi: 10.1159/000331207.
    1. de Carvalho FG, et al. In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatr. Dent. 2014;36:85–89.
    1. Kim MY, Kwon HK, Choi CH, Kim BI. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Eng. Mater. 2007;330:1347–1350. doi: 10.4028/.
    1. Venegas SC, Palacios JM, Apella MC, Morando PJ, Blesa MA. Calcium modulates interactions between bacteria and hydroxyapatite. J. Dent. Res. 2006;85:1124–1128. doi: 10.1177/154405910608501211.
    1. Swarup JS, Rao A. Enamel surface remineralization: using synthetic nanohydroxyapatite. Contemp. Clin. Dent. 2012;3:433–436. doi: 10.4103/0976-237X.107434.
    1. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann. Stomatol. 2014;20:108–114.
    1. Li L, et al. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem. 2008;18:4079–4084. doi: 10.1039/b806090h.
    1. Schäfer F, Beasley T, Abraham P. In vivo delivery of fluoride and calcium from toothpaste containing 2% hydroxyapatite. Int. Dent. J. 2009;59:321–324. doi: 10.1002/idj.2009.59.6s1.321.
    1. Hannig M, Hannig C. Nanotechnology and its role in caries therapy. Adv. Dent. Res. 2012;24:53–57. doi: 10.1177/0022034512450446.
    1. Palmieri C, Magi G, Orsini G, Putignano A, Facinelli B. Antibiofilm activity of zinc-carbonate hydroxyapatite nanocrystals against Streptococcus mutans and mitis group streptococci. Curr. Microbiol. 2013;67:679–681. doi: 10.1007/s00284-013-0419-1.
    1. Ribeiro LG, Hashizume LN, Maltz M. The effect of different formulations of chlorhexidine in reducing levels of mutans streptococci in the oral cavity: a systematic review of the literature. J. Dent. 2007;35:359–370. doi: 10.1016/j.jdent.2007.01.007.
    1. Hannig C, Basche S, Burghardt T, Al-Ahmad A, Hannig M. Influence of a mouthwash containing HAP microclusters on bacterial adfherence in situ. Clin. Oral. Investig. 2013;17:805–814. doi: 10.1007/s00784-012-0781-6.
    1. Damato FA, Strang R, Stephen KW. Effect of fluoride concentration on remineralization of carious enamel: an in vitro pH-cycling study. Caries Res. 1990;24:174–180. doi: 10.1159/000261262.
    1. Hausen H, Kärkkäinen S, Seppä L. Application of the high-risk strategy to control dental caries. Community Dent. Oral. Epidemiol. 2000;28:26–34. doi: 10.1034/j.1600-0528.2000.280104.x.
    1. Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018;77:1–14. doi: 10.1016/j.actbio.2018.07.036.

Source: PubMed

3
Sottoscrivi