The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes

Dorota Monies, Mohamed Abouelhoda, Moeenaldeen AlSayed, Zuhair Alhassnan, Maha Alotaibi, Husam Kayyali, Mohammed Al-Owain, Ayaz Shah, Zuhair Rahbeeni, Mohammad A Al-Muhaizea, Hamad I Alzaidan, Edward Cupler, Saeed Bohlega, Eissa Faqeih, Maha Faden, Banan Alyounes, Dyala Jaroudi, Ewa Goljan, Hadeel Elbardisy, Asma Akilan, Renad Albar, Hesham Aldhalaan, Shamshad Gulab, Aziza Chedrawi, Bandar K Al Saud, Wesam Kurdi, Nawal Makhseed, Tahani Alqasim, Heba Y El Khashab, Hamoud Al-Mousa, Amal Alhashem, Imaduddin Kanaan, Talal Algoufi, Khalid Alsaleem, Talal A Basha, Fathiya Al-Murshedi, Sameena Khan, Adila Al-Kindy, Maha Alnemer, Sami Al-Hajjar, Suad Alyamani, Hasan Aldhekri, Ali Al-Mehaidib, Rand Arnaout, Omar Dabbagh, Mohammad Shagrani, Dieter Broering, Maha Tulbah, Amal Alqassmi, Maisoon Almugbel, Mohammed AlQuaiz, Abdulaziz Alsaman, Khalid Al-Thihli, Raashda A Sulaiman, Wajeeh Al-Dekhail, Abeer Alsaegh, Fahad A Bashiri, Alya Qari, Suzan Alhomadi, Hisham Alkuraya, Mohammed Alsebayel, Muddathir H Hamad, Laszlo Szonyi, Faisal Abaalkhail, Sulaiman M Al-Mayouf, Hamad Almojalli, Khalid S Alqadi, Hussien Elsiesy, Taghreed M Shuaib, Mohammed Zain Seidahmed, Ibraheem Abosoudah, Hana Akleh, Abdulaziz AlGhonaium, Turki M Alkharfy, Fuad Al Mutairi, Wafa Eyaid, Abdullah Alshanbary, Farrukh R Sheikh, Fahad I Alsohaibani, Abdullah Alsonbul, Saeed Al Tala, Soher Balkhy, Randa Bassiouni, Ahmed S Alenizi, Maged H Hussein, Saeed Hassan, Mohamed Khalil, Brahim Tabarki, Saad Alshahwan, Amira Oshi, Yasser Sabr, Saad Alsaadoun, Mustafa A Salih, Sarar Mohamed, Habiba Sultana, Abdullah Tamim, Moayad El-Haj, Saif Alshahrani, Dalal K Bubshait, Majid Alfadhel, Tariq Faquih, Mohamed El-Kalioby, Shazia Subhani, Zeeshan Shah, Nabil Moghrabi, Brian F Meyer, Fowzan S Alkuraya, Dorota Monies, Mohamed Abouelhoda, Moeenaldeen AlSayed, Zuhair Alhassnan, Maha Alotaibi, Husam Kayyali, Mohammed Al-Owain, Ayaz Shah, Zuhair Rahbeeni, Mohammad A Al-Muhaizea, Hamad I Alzaidan, Edward Cupler, Saeed Bohlega, Eissa Faqeih, Maha Faden, Banan Alyounes, Dyala Jaroudi, Ewa Goljan, Hadeel Elbardisy, Asma Akilan, Renad Albar, Hesham Aldhalaan, Shamshad Gulab, Aziza Chedrawi, Bandar K Al Saud, Wesam Kurdi, Nawal Makhseed, Tahani Alqasim, Heba Y El Khashab, Hamoud Al-Mousa, Amal Alhashem, Imaduddin Kanaan, Talal Algoufi, Khalid Alsaleem, Talal A Basha, Fathiya Al-Murshedi, Sameena Khan, Adila Al-Kindy, Maha Alnemer, Sami Al-Hajjar, Suad Alyamani, Hasan Aldhekri, Ali Al-Mehaidib, Rand Arnaout, Omar Dabbagh, Mohammad Shagrani, Dieter Broering, Maha Tulbah, Amal Alqassmi, Maisoon Almugbel, Mohammed AlQuaiz, Abdulaziz Alsaman, Khalid Al-Thihli, Raashda A Sulaiman, Wajeeh Al-Dekhail, Abeer Alsaegh, Fahad A Bashiri, Alya Qari, Suzan Alhomadi, Hisham Alkuraya, Mohammed Alsebayel, Muddathir H Hamad, Laszlo Szonyi, Faisal Abaalkhail, Sulaiman M Al-Mayouf, Hamad Almojalli, Khalid S Alqadi, Hussien Elsiesy, Taghreed M Shuaib, Mohammed Zain Seidahmed, Ibraheem Abosoudah, Hana Akleh, Abdulaziz AlGhonaium, Turki M Alkharfy, Fuad Al Mutairi, Wafa Eyaid, Abdullah Alshanbary, Farrukh R Sheikh, Fahad I Alsohaibani, Abdullah Alsonbul, Saeed Al Tala, Soher Balkhy, Randa Bassiouni, Ahmed S Alenizi, Maged H Hussein, Saeed Hassan, Mohamed Khalil, Brahim Tabarki, Saad Alshahwan, Amira Oshi, Yasser Sabr, Saad Alsaadoun, Mustafa A Salih, Sarar Mohamed, Habiba Sultana, Abdullah Tamim, Moayad El-Haj, Saif Alshahrani, Dalal K Bubshait, Majid Alfadhel, Tariq Faquih, Mohamed El-Kalioby, Shazia Subhani, Zeeshan Shah, Nabil Moghrabi, Brian F Meyer, Fowzan S Alkuraya

Abstract

In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016-December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests. Pathogenic or likely pathogenic variants that explain the clinical indications were identified in 34% (27% in panels and 43% in exomes), spanning 279 genes and including 165 novel variants. While recessive mutations dominated the landscape of solved cases (71% of mutations, and 97% of which are homozygous), a substantial minority (27%) were solved on the basis of dominant mutations. The highly consanguineous nature of the study population also facilitated homozygosity for many private mutations (only 32.5% of the recessive mutations are founder), as well as the first instances of recessive inheritance of previously assumed strictly dominant disorders (involving ITPR1, VAMP1, MCTP2, and TBP). Surprisingly, however, dual molecular diagnosis was only observed in 1.5% of cases. Finally, we have encountered candidate variants in 75 genes (ABHD6, ACY3, ADGRB2, ADGRG7, AGTPBP1, AHNAK2, AKAP6, ASB3, ATXN1L, C17orf62, CABP1, CCDC186, CCP110, CLSTN2, CNTN3, CNTN5, CTNNA2, CWC22, DMAP1, DMKN, DMXL1, DSCAM, DVL2, ECI1, EP400, EPB41L5, FBXL22, GAP43, GEMIN7, GIT1, GRIK4, GRSF1, GTRP1, HID1, IFNL1, KCNC4, LRRC52, MAP7D3, MCTP2, MED26, MPP7, MRPS35, MTDH, MTMR9, NECAP2, NPAT, NRAP, PAX7, PCNX, PLCH2, PLEKHF1, PTPN12, QKI, RILPL2, RIMKLA, RIMS2, RNF213, ROBO1, SEC16A, SIAH1, SIRT2, SLAIN2, SLC22A20, SMDT1, SRRT, SSTR1, ST20, SYT9, TSPAN6, UBR4, VAMP4, VPS36, WDR59, WDYHV1, and WHSC1) not previously linked to human phenotypes and these are presented to accelerate post-publication matchmaking. Two of these genes were independently mutated in more than one family with similar phenotypes, which substantiates their link to human disease (AKAP6 in intellectual disability and UBR4 in early dementia). If the novel candidate disease genes in this cohort are independently confirmed, the yield of WES will have increased to 83%, which suggests that most "negative" clinical exome tests are unsolved due to interpretation rather than technical limitations.

Conflict of interest statement

Medical Diagnostic Laboratory generates revenues for KFSHRC.

Figures

Fig. 1
Fig. 1
Pie charts showing the yield of the two testing modalities and the breakdown of mutation classes in positive cases

References

    1. Abouelhoda M, Faquih T, El-Kalioby M, Alkuraya FS. Revisiting the morbid genome of Mendelian disorders. Genome Biol. 2016;17:235. doi: 10.1186/s13059-016-1102-1.
    1. Alfares AA, Alfadhel M, Wani T, Alsahli S, Alluhaydan I, Al Mutairi F, Alothaim A, Albalwi M, Alturki S, Al-Twaijri W. A multicenter clinical exome study in unselected cohorts from a consanguineous population of Saudi Arabia demonstrated a high diagnostic yield. Mol Genet Metab. 2017
    1. Alkuraya FS. Genetics and genomic medicine in Saudi Arabia. Mol Genet Genom Med. 2014;2:369–378. doi: 10.1002/mgg3.97.
    1. Alkuraya FS. Natural human knockouts and the era of genotype to phenotype. Genome Med. 2015;7:48. doi: 10.1186/s13073-015-0173-z.
    1. Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin H, Patel N, Hashem M, Ibrahim N, Abdulwahab F. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2016
    1. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–755. doi: 10.1038/nrg3031.
    1. Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, Ives EJ, Pryse-Phillips W, Jog M, Boycott K. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet. 2012;91:548–552. doi: 10.1016/j.ajhg.2012.07.018.
    1. Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS, Baynam G, Brookes AJ, Brudno M, Carracedo A, den Dunnen JT. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100:695–705. doi: 10.1016/j.ajhg.2017.04.003.
    1. Butcher DT, Cytrynbaum C, Turinsky AL, Siu MT, Inbar-Feigenberg M, Mendoza-Londono R, Chitayat D, Walker S, Machado J, Caluseriu O. CHARGE and Kabuki syndromes: gene-specific DNA methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions. Am J Hum Genet. 2017;100:773–788. doi: 10.1016/j.ajhg.2017.04.004.
    1. Carr IM, Bhaskar S, O’Sullivan J, Aldahmesh MA, Shamseldin HE, Markham AF, Bonthron DT, Black G, Alkuraya FS. Autozygosity mapping with exome sequence data. Hum Mutat. 2013;34:50–56. doi: 10.1002/humu.22220.
    1. Dheensa S, Shkedi‐Rafid S, Crawford G, Bertier G, Schonstein L, Lucassen A (2016) Management of incidental findings in clinical genomic sequencing studies. eLS 1–7. doi:10.1002/9780470015902.a0025838
    1. Grampsas SA, Chandhoke PS, Fan J, Glass MA, Townsend R, Johnson AM, Gabow P. Anatomic and metabolic risk factors for nephrolithiasis in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2000;36:53–57. doi: 10.1053/ajkd.2000.8266.
    1. Group SM. Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol. 2015;16:1–14. doi: 10.1186/s13059-014-0572-2.
    1. Harrison SM, Riggs ER, Maglott DR, Lee JM, Azzariti DR, Niehaus A, Ramos EM, Martin CL, Landrum MJ, Rehm HL. Using ClinVar as a resource to support variant interpretation. Curr Protoc Hum Genet. 2016;89:8.16.1–8.16.23. doi: 10.1002/0471142905.hg0816s89.
    1. Ilgaz Aydinlar E, Rolfs A, Serteser M, Parman Y. Mutation in FAM134B causing hereditary sensory neuropathy with spasticity in a Turkish family. Muscle Nerve. 2014;49:774–775. doi: 10.1002/mus.24145.
    1. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, Herman GE, Hufnagel SB, Klein TE, Korf BR. Recommendations for reporting of secondary findings in clinical exome and genome sequencing 2016 update (ACMG SF v2. 0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2016
    1. Kurth I, Pamminger T, Hennings JC, Soehendra D, Huebner AK, Rotthier A, Baets J, Senderek J, Topaloglu H, Farrell SA. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet. 2009;41:1179–1181. doi: 10.1038/ng.464.
    1. Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, Sulaiman RA, Faqeih E, Goljan E, Ibrahim N. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet Med. 2017
    1. Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y. A histone H3 lysine 36 trimethyltransferase links Nk2–5 to Wolf-Hirschhorn syndrome. Nature. 2009;460:287–291. doi: 10.1038/nature08086.
    1. Parsons K, Nakatani Y, Nguyen MD. p600/UBR4 in the central nervous system. Cell Mol Life Sci. 2015;72:1149–1160. doi: 10.1007/s00018-014-1788-8.
    1. Patel N, Alkuraya FS. Overlap between CHARGE and Kabuki syndromes: more than an interesting clinical observation? Am J Med Genet A. 2015;167:259–260. doi: 10.1002/ajmg.a.36804.
    1. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, Walkiewicz M, Bi W, Xiao R, Ding Y. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376:21–31. doi: 10.1056/NEJMoa1516767.
    1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–423. doi: 10.1038/gim.2015.30.
    1. Shamseldin HE, Maddirevula S, Faqeih E, Ibrahim N, Hashem M, Shaheen R, Alkuraya FS. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genet Med. 2016
    1. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017
    1. Trujillano D, Bertoli-Avella AM, Kandaswamy KK, Weiss ME, Köster J, Marais A, Paknia O, Schröder R, Garcia-Aznar JM, Werber M. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet. 2017;25:176–182. doi: 10.1038/ejhg.2016.146.
    1. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–1511. doi: 10.1056/NEJMoa1306555.
    1. Yavarna T, Al-Dewik N, Al-Mureikhi M, Ali R, Al-Mesaifri F, Mahmoud L, Shahbeck N, Lakhani S, AlMulla M, Nawaz Z. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet. 2015;134:967–980. doi: 10.1007/s00439-015-1575-0.

Source: PubMed

3
Sottoscrivi