Creatine in Health and Disease

Richard B Kreider, Jeffery R Stout, Richard B Kreider, Jeffery R Stout

Abstract

Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.

Keywords: anti-inflammatory; anticancer; antioxidant; cellular metabolism; cognition; concussion; creatine synthesis deficiencies; diabetes; ergogenic aids; immunity; muscle atrophy; phosphagens; pregnancy; rehabilitation; sarcopenia; spinal cord injury; traumatic brain injury.

Conflict of interest statement

R.B.K. has conducted industry sponsored research on creatine, received financial support for presenting on creatine at industry sponsored scientific conferences, and has served as an expert witness on cases related to creatine. Additionally, he serves as Chair of the Scientific Advisory Board for AlzChem who sponsored this special issue. J.R.S. has conducted industry-sponsored research on creatine and other nutraceuticals over the past 25 years. Further, J.R.S. has also received financial support for presenting on the science of various nutraceuticals, except creatine, at industry-sponsored scientific conferences.

References

    1. Kreider R.B., Kalman D.S., Antonio J., Ziegenfuss T.N., Wildman R., Collins R., Candow D.G., Kleiner S.M., Almada A.L., Lopez H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017;14:18. doi: 10.1186/s12970-017-0173-z.
    1. Stares A., Bains M. The Additive Effects of Creatine Supplementation and Exercise Training in an Aging Population: A Systematic Review of Randomized Controlled Trials. J. Geriatr. Phys. Ther. 2020;43:99–112. doi: 10.1519/JPT.0000000000000222.
    1. Dolan E., Gualano B., Rawson E.S. Beyond muscle: The effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur. J. Sport Sci. 2019;19:1–14. doi: 10.1080/17461391.2018.1500644.
    1. Dolan E., Artioli G.G., Pereira R.M.R., Gualano B. Muscular Atrophy and Sarcopenia in the Elderly: Is There a Role for Creatine Supplementation? Biomolecules. 2019;9:642. doi: 10.3390/biom9110642.
    1. Wallimann T., Riek U., Moddel M. Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients. Med. Hypotheses. 2017;99:1–14. doi: 10.1016/j.mehy.2016.12.002.
    1. Riesberg L.A., Weed S.A., McDonald T.L., Eckerson J.M., Drescher K.M. Beyond muscles: The untapped potential of creatine. Int. Immunopharmacol. 2016;37:31–42. doi: 10.1016/j.intimp.2015.12.034.
    1. Ellery S.J., Walker D.W., Dickinson H. Creatine for women: A review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids. 2016;48:1807–1817. doi: 10.1007/s00726-016-2199-y.
    1. Smith R.N., Agharkar A.S., Gonzales E.B. A review of creatine supplementation in age-related diseases: More than a supplement for athletes. F1000Research. 2014;3:222. doi: 10.12688/f1000research.5218.1.
    1. Candow D.G., Chilibeck P.D., Forbes S.C. Creatine supplementation and aging musculoskeletal health. Endocrine. 2014;45:354–361. doi: 10.1007/s12020-013-0070-4.
    1. Gualano B., Roschel H., Lancha A.H., Jr., Brightbill C.E., Rawson E.S. In sickness and in health: The widespread application of creatine supplementation. Amino Acids. 2012;43:519–529. doi: 10.1007/s00726-011-1132-7.
    1. Pinto C.L., Botelho P.B., Pimentel G.D., Campos-Ferraz P.L., Mota J.F. Creatine supplementation and glycemic control: A systematic review. Amino Acids. 2016;48:2103–2129. doi: 10.1007/s00726-016-2277-1.
    1. Candow D.G., Forbes S.C., Chilibeck P.D., Cornish S.M., Antonio J., Kreider R.B. Variables Influencing the Effectiveness of Creatine Supplementation as a Therapeutic Intervention for Sarcopenia. Front. Nutr. 2019;6:124. doi: 10.3389/fnut.2019.00124.
    1. Chilibeck P.D., Kaviani M., Candow D.G., Zello G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Open Access J. Sports Med. 2017;8:213–226. doi: 10.2147/OAJSM.S123529.
    1. Candow D.G., Forbes S.C., Chilibeck P.D., Cornish S.M., Antonio J., Kreider R.B. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J. Clin. Med. 2019;8:488. doi: 10.3390/jcm8040488.
    1. Fairman C.M., Kendall K.L., Newton R.U., Hart N.H., Taaffe D.R., Chee R., Tang C.I., Galvao D.A. Examining the effects of creatine supplementation in augmenting adaptations to resistance training in patients with prostate cancer undergoing androgen deprivation therapy: A randomised, double-blind, placebo-controlled trial. BMJ Open. 2019;9:e030080. doi: 10.1136/bmjopen-2019-030080.
    1. Fairman C.M., Kendall K.L., Hart N.H., Taaffe D.R., Galvao D.A., Newton R.U. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit. Rev. Oncol Hematol. 2019;133:46–57. doi: 10.1016/j.critrevonc.2018.11.003.
    1. Di Biase S., Ma X., Wang X., Yu J., Wang Y.C., Smith D.J., Zhou Y., Li Z., Kim Y.J., Clarke N., et al. Creatine uptake regulates CD8 T cell antitumor immunity. J. Exp. Med. 2019;216:2869–2882. doi: 10.1084/jem.20182044.
    1. Campos-Ferraz P.L., Gualano B., das Neves W., Andrade I.T., Hangai I., Pereira R.T., Bezerra R.N., Deminice R., Seelaender M., Lancha A.H. Exploratory studies of the potential anti-cancer effects of creatine. Amino Acids. 2016;48:1993–2001. doi: 10.1007/s00726-016-2180-9.
    1. Dover S., Stephens S., Schneiderman J.E., Pullenayegum E., Wells G.D., Levy D.M., Marcuz J.A., Whitney K., Schulze A., Tein I., et al. The effect of creatine supplementation on muscle function in childhood myositis: A randomized, double-blind, placebo-controlled feasibility study. J. Rheumatol. 2020 doi: 10.3899/jrheum.191375.
    1. Balestrino M., Adriano E. Creatine as a Candidate to Prevent Statin Myopathy. Biomolecules. 2019;9:496. doi: 10.3390/biom9090496.
    1. Balestrino M., Sarocchi M., Adriano E., Spallarossa P. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids. 2016;48:1955–1967. doi: 10.1007/s00726-016-2173-8.
    1. Neves M., Jr., Gualano B., Roschel H., Fuller R., Benatti F.B., Pinto A.L., Lima F.R., Pereira R.M., Lancha A.H., Jr., Bonfa E. Beneficial effect of creatine supplementation in knee osteoarthritis. Med. Sci. Sports Exerc. 2011;43:1538–1543. doi: 10.1249/MSS.0b013e3182118592.
    1. Cornelissen V.A., Defoor J.G., Stevens A., Schepers D., Hespel P., Decramer M., Mortelmans L., Dobbels F., Vanhaecke J., Fagard R.H., et al. Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: A randomized controlled trial. Clin. Rehabil. 2010;24:988–999. doi: 10.1177/0269215510367995.
    1. Al-Ghimlas F., Todd D.C. Creatine supplementation for patients with COPD receiving pulmonary rehabilitation: A systematic review and meta-analysis. Respirology. 2010;15:785–795. doi: 10.1111/j.1440-1843.2010.01770.x.
    1. Hespel P., Derave W. Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem. 2007;46:245–259.
    1. Hespel P., Op’t Eijnde B., Van Leemputte M., Urso B., Greenhaff P.L., Labarque V., Dymarkowski S., Van Hecke P., Richter E.A. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J. Physiol. 2001;536:625–633. doi: 10.1111/j.1469-7793.2001.0625c.xd.
    1. Van Cutsem J., Roelands B., Pluym B., Tassignon B., Verschueren J.O., De Pauw K., Meeusen R. Can Creatine Combat the Mental Fatigue-associated Decrease in Visuomotor Skills? Med. Sci. Sports Exerc. 2020;52:120–130. doi: 10.1249/MSS.0000000000002122.
    1. Avgerinos K.I., Spyrou N., Bougioukas K.I., Kapogiannis D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp. Gerontol. 2018;108:166–173. doi: 10.1016/j.exger.2018.04.013.
    1. Toniolo R.A., Fernandes F.B.F., Silva M., Dias R.D.S., Lafer B. Cognitive effects of creatine monohydrate adjunctive therapy in patients with bipolar depression: Results from a randomized, double-blind, placebo-controlled trial. J. Affect. Disord. 2017;224:69–75. doi: 10.1016/j.jad.2016.11.029.
    1. Van Bavel D., de Moraes R., Tibirica E. Effects of dietary supplementation with creatine on homocysteinemia and systemic microvascular endothelial function in individuals adhering to vegan diets. Fundam. Clin. Pharmacol. 2019;33:428–440. doi: 10.1111/fcp.12442.
    1. Zervou S., Whittington H.J., Russell A.J., Lygate C.A. Augmentation of Creatine in the Heart. Mini Rev. Med. Chem. 2016;16:19–28. doi: 10.2174/1389557515666150722102151.
    1. Clarke H., Kim D.H., Meza C.A., Ormsbee M.J., Hickner R.C. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients. 2020;12:2834. doi: 10.3390/nu12092834.
    1. Jager R., Purpura M., Shao A., Inoue T., Kreider R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids. 2011;40:1369–1383. doi: 10.1007/s00726-011-0874-6.
    1. Paddon-Jones D., Borsheim E., Wolfe R.R. Potential ergogenic effects of arginine and creatine supplementation. J. Nutr. 2004;134:2888S–2894S. doi: 10.1093/jn/134.10.2888S.
    1. Brosnan M.E., Brosnan J.T. The role of dietary creatine. Amino Acids. 2016;48:1785–1791. doi: 10.1007/s00726-016-2188-1.
    1. da Silva R.P., Clow K., Brosnan J.T., Brosnan M.E. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. Br. J. Nutr. 2014;111:571–577. doi: 10.1017/S0007114513003012.
    1. da Silva R.P., Nissim I., Brosnan M.E., Brosnan J.T. Creatine synthesis: Hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 2009;296:E256–E261. doi: 10.1152/ajpendo.90547.2008.
    1. Bertin M., Pomponi S.M., Kokuhuta C., Iwasaki N., Suzuki T., Ellington W.R. Origin of the genes for the isoforms of creatine kinase. Gene. 2007;392:273–282. doi: 10.1016/j.gene.2007.01.007.
    1. Suzuki T., Mizuta C., Uda K., Ishida K., Mizuta K., Sona S., Compaan D.M., Ellington W.R. Evolution and divergence of the genes for cytoplasmic, mitochondrial, and flagellar creatine kinases. J. Mol. Evol. 2004;59:218–226. doi: 10.1007/s00239-004-2615-x.
    1. Sahlin K., Harris R.C. The creatine kinase reaction: A simple reaction with functional complexity. Amino Acids. 2011;40:1363–1367. doi: 10.1007/s00726-011-0856-8.
    1. Harris R. Creatine in health, medicine and sport: An introduction to a meeting held at Downing College, University of Cambridge, July 2010. Amino Acids. 2011;40:1267–1270. doi: 10.1007/s00726-011-0913-3.
    1. Kerksick C.M., Wilborn C.D., Roberts M.D., Smith-Ryan A., Kleiner S.M., Jager R., Collins R., Cooke M., Davis J.N., Galvan E., et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018;15:38. doi: 10.1186/s12970-018-0242-y.
    1. Meyers S. Natural Products Insider. Informa Exhibitions; Irving, TX, USA: 2016. Sports nutrition market growth watch.
    1. Buford T.W., Kreider R.B., Stout J.R., Greenwood M., Campbell B., Spano M., Ziegenfuss T., Lopez H., Landis J., Antonio J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 2007;4:6. doi: 10.1186/1550-2783-4-6.
    1. Kreider R.B., Jung Y.P. Creatine supplementation in exercise, sport, and medicine. J. Exerc. Nutr. Biochem. 2011;15:53–69. doi: 10.5717/jenb.2011.15.2.53.
    1. Hultman E., Soderlund K., Timmons J.A., Cederblad G., Greenhaff P.L. Muscle creatine loading in men. J. Appl. Physiol. 1996;81:232–237. doi: 10.1152/jappl.1996.81.1.232.
    1. Green A.L., Hultman E., Macdonald I.A., Sewell D.A., Greenhaff P.L. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am. J. Physiol. 1996;271:E821–E826. doi: 10.1152/ajpendo.1996.271.5.E821.
    1. Balsom P.D., Soderlund K., Ekblom B. Creatine in humans with special reference to creatine supplementation. Sports Med. 1994;18:268–280. doi: 10.2165/00007256-199418040-00005.
    1. Harris R.C., Soderlund K., Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992;83:367–374. doi: 10.1042/cs0830367.
    1. Wallimann T., Tokarska-Schlattner M., Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40:1271–1296. doi: 10.1007/s00726-011-0877-3.
    1. Bender A., Klopstock T. Creatine for neuroprotection in neurodegenerative disease: End of story? Amino Acids. 2016;48:1929–1940. doi: 10.1007/s00726-015-2165-0.
    1. Hanna-El-Daher L., Braissant O. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models? Amino Acids. 2016;48:1877–1895. doi: 10.1007/s00726-016-2189-0.
    1. Braissant O., Henry H., Beard E., Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. 2011;40:1315–1324. doi: 10.1007/s00726-011-0852-z.
    1. Wallimann T., Schlosser T., Eppenberger H.M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J. Biol. Chem. 1984;259:5238–5246. doi: 10.1016/S0021-9258(17)42981-4.
    1. Wallimann T., Dolder M., Schlattner U., Eder M., Hornemann T., O’Gorman E., Ruck A., Brdiczka D. Some new aspects of creatine kinase (CK): Compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors. 1998;8:229–234. doi: 10.1002/biof.5520080310.
    1. Schlattner U., Klaus A., Rios S.R., Guzun R., Kay L., Tokarska-Schlattner M. Cellular compartmentation of energy metabolism: Creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids. 2016;48:1751–1774. doi: 10.1007/s00726-016-2267-3.
    1. Ydfors M., Hughes M.C., Laham R., Schlattner U., Norrbom J., Perry C.G. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. J. Physiol. 2016;594:3127–3140. doi: 10.1113/JP271259.
    1. Tarnopolsky M.A., Parshad A., Walzel B., Schlattner U., Wallimann T. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve. 2001;24:682–688. doi: 10.1002/mus.1055.
    1. Santacruz L., Jacobs D.O. Structural correlates of the creatine transporter function regulation: The undiscovered country. Amino Acids. 2016;48:2049–2055. doi: 10.1007/s00726-016-2206-3.
    1. Braissant O. Creatine and guanidinoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. J. Inherit. Metab. Dis. 2012;35:655–664. doi: 10.1007/s10545-011-9433-2.
    1. Beard E., Braissant O. Synthesis and transport of creatine in the CNS: Importance for cerebral functions. J. Neurochem. 2010;115:297–313. doi: 10.1111/j.1471-4159.2010.06935.x.
    1. Saraiva A.L., Ferreira A.P., Silva L.F., Hoffmann M.S., Dutra F.D., Furian A.F., Oliveira M.S., Fighera M.R., Royes L.F. Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury. Brain Res. Bull. 2012;87:180–186. doi: 10.1016/j.brainresbull.2011.10.010.
    1. Rahimi R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J. Strength Cond. Res. 2011;25:3448–3455. doi: 10.1519/JSC.0b013e3182162f2b.
    1. Tarnopolsky M.A. Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem. 2007;46:183–204.
    1. Kley R.A., Tarnopolsky M.A., Vorgerd M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 2011 doi: 10.1002/14651858.CD004760.pub3.
    1. Tarnopolsky M.A. Potential benefits of creatine monohydrate supplementation in the elderly. Curr. Opin. Clin. Nutr. Metab. Care. 2000;3:497–502. doi: 10.1097/00075197-200011000-00013.
    1. Candow D.G., Vogt E., Johannsmeyer S., Forbes S.C., Farthing J.P. Strategic creatine supplementation and resistance training in healthy older adults. Appl. Physiol. Nutr. Metab. 2015;40:689–694. doi: 10.1139/apnm-2014-0498.
    1. Moon A., Heywood L., Rutherford S., Cobbold C. Creatine supplementation: Can it improve quality of life in the elderly without associated resistance training? Curr. Aging Sci. 2013;6:251–257. doi: 10.2174/1874609806666131204153102.
    1. Rawson E.S., Venezia A.C. Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids. 2011;40:1349–1362. doi: 10.1007/s00726-011-0855-9.
    1. Candow D.G. Sarcopenia: Current theories and the potential beneficial effect of creatine application strategies. Biogerontology. 2011;12:273–281. doi: 10.1007/s10522-011-9327-6.
    1. Candow D.G., Chilibeck P.D. Potential of creatine supplementation for improving aging bone health. J. Nutr. Health Aging. 2010;14:149–153. doi: 10.1007/s12603-009-0224-5.
    1. Cornish S.M., Chilibeck P.D., Burke D.G. The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. J. Sports Med. Phys. Fit. 2006;46:90–98.
    1. Dawson B., Vladich T., Blanksby B.A. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. J. Strength Cond. Res. 2002;16:485–490.
    1. Grindstaff P.D., Kreider R., Bishop R., Wilson M., Wood L., Alexander C., Almada A. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Int. J. Sport Nutr. 1997;7:330–346. doi: 10.1123/ijsn.7.4.330.
    1. Juhasz I., Gyore I., Csende Z., Racz L., Tihanyi J. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Acta Physiol. Hung. 2009;96:325–336. doi: 10.1556/APhysiol.96.2009.3.6.
    1. Silva A.J., Machado Reis V., Guidetti L., Bessone Alves F., Mota P., Freitas J., Baldari C. Effect of creatine on swimming velocity, body composition and hydrodynamic variables. J. Sports Med. Phys. Fit. 2007;47:58–64.
    1. Kreider R.B., Ferreira M., Wilson M., Grindstaff P., Plisk S., Reinardy J., Cantler E., Almada A.L. Effects of creatine supplementation on body composition, strength, and sprint performance. Med. Sci. Sports Exerc. 1998;30:73–82. doi: 10.1097/00005768-199801000-00011.
    1. Stone M.H., Sanborn K., Smith L.L., O’Bryant H.S., Hoke T., Utter A.C., Johnson R.L., Boros R., Hruby J., Pierce K.C., et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int. J. Sport Nutr. 1999;9:146–165.
    1. Bemben M.G., Bemben D.A., Loftiss D.D., Knehans A.W. Creatine supplementation during resistance training in college football athletes. Med. Sci. Sports Exerc. 2001;33:1667–1673.
    1. Hoffman J., Ratamess N., Kang J., Mangine G., Faigenbaum A., Stout J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr. Exerc. Metab. 2006;16:430–446. doi: 10.1123/ijsnem.16.4.430.
    1. Chilibeck P.D., Magnus C., Anderson M. Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Appl. Physiol. Nutr. Metab. 2007;32:1052–1057. doi: 10.1139/H07-072.
    1. Claudino J.G., Mezencio B., Amaral S., Zanetti V., Benatti F., Roschel H., Gualano B., Amadio A.C., Serrao J.C. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. J. Int. Soc. Sports Nutr. 2014;11:32. doi: 10.1186/1550-2783-11-32.
    1. Kerksick C.M., Rasmussen C., Lancaster S., Starks M., Smith P., Melton C., Greenwood M., Almada A., Kreider R. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition. 2007;23:647–656. doi: 10.1016/j.nut.2007.06.015.
    1. Kerksick C.M., Wilborn C.D., Campbell W.I., Harvey T.M., Marcello B.M., Roberts M.D., Parker A.G., Byars A.G., Greenwood L.D., Almada A.L., et al. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J. Strength Cond. Res. 2009;23:2673–2682. doi: 10.1519/JSC.0b013e3181b3e0de.
    1. Galvan E., Walker D.K., Simbo S.Y., Dalton R., Levers K., O’Connor A., Goodenough C., Barringer N.D., Greenwood M., Rasmussen C., et al. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. J. Int. Soc. Sports Nutr. 2016;13:12. doi: 10.1186/s12970-016-0124-0.
    1. Volek J.S., Kraemer W.J., Bush J.A., Boetes M., Incledon T., Clark K.L., Lynch J.M. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J. Am. Diet. Assoc. 1997;97:765–770. doi: 10.1016/S0002-8223(97)00189-2.
    1. Volek J.S., Mazzetti S.A., Farquhar W.B., Barnes B.R., Gomez A.L., Kraemer W.J. Physiological responses to short-term exercise in the heat after creatine loading. Med. Sci. Sports Exerc. 2001;33:1101–1108. doi: 10.1097/00005768-200107000-00006.
    1. Volek J.S., Ratamess N.A., Rubin M.R., Gomez A.L., French D.N., McGuigan M.M., Scheett T.P., Sharman M.J., Hakkinen K., Kraemer W.J. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur. J. Appl. Physiol. 2004;91:628–637. doi: 10.1007/s00421-003-1031-z.
    1. Kreider R.B., Wilborn C.D., Taylor L., Campbell B., Almada A.L., Collins R., Cooke M., Earnest C.P., Greenwood M., Kalman D.S., et al. ISSN exercise & sport nutrition review: Research & recommendations. J. Int. Soc. Sports Nutr. 2010;7:7. doi: 10.1186/1550-2783-7-7.
    1. Branch J.D. Effect of creatine supplementation on body composition and performance: A meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2003;13:198–226. doi: 10.1123/ijsnem.13.2.198.
    1. Devries M.C., Phillips S.M. Creatine supplementation during resistance training in older adults-a meta-analysis. Med. Sci. Sports Exerc. 2014;46:1194–1203. doi: 10.1249/MSS.0000000000000220.
    1. Lanhers C., Pereira B., Naughton G., Trousselard M., Lesage F.X., Dutheil F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med. 2015;45:1285–1294. doi: 10.1007/s40279-015-0337-4.
    1. Wiroth J.B., Bermon S., Andrei S., Dalloz E., Hebuterne X., Dolisi C. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur. J. Appl. Physiol. 2001;84:533–539. doi: 10.1007/s004210000370.
    1. McMorris T., Mielcarz G., Harris R.C., Swain J.P., Howard A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2007;14:517–528. doi: 10.1080/13825580600788100.
    1. Rawson E.S., Clarkson P.M. Acute creatine supplementation in older men. Int. J. Sports Med. 2000;21:71–75. doi: 10.1055/s-2000-8859.
    1. Aguiar A.F., Januario R.S., Junior R.P., Gerage A.M., Pina F.L., do Nascimento M.A., Padovani C.R., Cyrino E.S. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur. J. Appl. Physiol. 2013;113:987–996. doi: 10.1007/s00421-012-2514-6.
    1. Kreider R.B. Effects of creatine supplementation on performance and training adaptations. Mol. Cell Biochem. 2003;244:89–94.
    1. Gualano B., Macedo A.R., Alves C.R., Roschel H., Benatti F.B., Takayama L., de Sa Pinto A.L., Lima F.R., Pereira R.M. Creatine supplementation and resistance training in vulnerable older women: A randomized double-blind placebo-controlled clinical trial. Exp. Gerontol. 2014;53:7–15. doi: 10.1016/j.exger.2014.02.003.
    1. Candow D.G., Little J.P., Chilibeck P.D., Abeysekara S., Zello G.A., Kazachkov M., Cornish S.M., Yu P.H. Low-dose creatine combined with protein during resistance training in older men. Med. Sci. Sports Exerc. 2008;40:1645–1652. doi: 10.1249/MSS.0b013e318176b310.
    1. Hass C.J., Collins M.A., Juncos J.L. Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: A randomized trial. Neurorehabilit. Neural Repair. 2007;21:107–115. doi: 10.1177/1545968306293449.
    1. Candow D.G., Chilibeck P.D. Effect of creatine supplementation during resistance training on muscle accretion in the elderly. J. Nutr. Health Aging. 2007;11:185–188.
    1. Chilibeck P.D., Chrusch M.J., Chad K.E., Shawn Davison K.S., Burke D.G. Creatine monohydrate and resistance training increase bone mineral content and density in older men. J. Nutr. Health Aging. 2005;9:352–353.
    1. Burke D.G., Chilibeck P.D., Parise G., Candow D.G., Mahoney D., Tarnopolsky M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 2003;35:1946–1955. doi: 10.1249/01.MSS.0000093614.17517.79.
    1. Wilder N., Gilders R., Hagerman F., Deivert R.G. The effects of a 10-week, periodized, off-season resistance-training program and creatine supplementation among collegiate football players. J. Strength Cond. Res. 2002;16:343–352.
    1. Izquierdo M., Ibanez J., Gonzalez-Badillo J.J., Gorostiaga E.M. Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med. Sci. Sports Exerc. 2002;34:332–343. doi: 10.1097/00005768-200202000-00023.
    1. Chrusch M.J., Chilibeck P.D., Chad K.E., Davison K.S., Burke D.G. Creatine supplementation combined with resistance training in older men. Med. Sci. Sports Exerc. 2001;33:2111–2117. doi: 10.1097/00005768-200112000-00021.
    1. Becque M.D., Lochmann J.D., Melrose D.R. Effects of oral creatine supplementation on muscular strength and body composition. Med. Sci. Sports Exerc. 2000;32:654–658. doi: 10.1097/00005768-200003000-00016.
    1. Volek J.S., Duncan N.D., Mazzetti S.A., Staron R.S., Putukian M., Gomez A.L., Pearson D.R., Fink W.J., Kraemer W.J. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med. Sci. Sports Exerc. 1999;31:1147–1156. doi: 10.1097/00005768-199908000-00011.
    1. Ziegenfuss T.N., Habowski S.M., Lemieux R., Sandrock J.E., Kedia A.W., Kerksick C.M., Lopez H.L. Effects of a dietary supplement on golf drive distance and functional indices of golf performance. J. Int. Soc. Sports Nutr. 2015;12:4. doi: 10.1186/s12970-014-0065-4.
    1. Lamontagne-Lacasse M., Nadon R., Goulet E.D. Effect of creatine supplementation on jumping performance in elite volleyball players. Int. J. Sports Physiol. Perform. 2011;6:525–533. doi: 10.1123/ijspp.6.4.525.
    1. Ramirez-Campillo R., Gonzalez-Jurado J.A., Martinez C., Nakamura F.Y., Penailillo L., Meylan C.M., Caniuqueo A., Canas-Jamet R., Moran J., Alonso-Martinez A.M., et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J. Sci. Med. Sport. 2016;19:682–687. doi: 10.1016/j.jsams.2015.10.005.
    1. Yanez-Silva A., Buzzachera C.F., Picarro I.D., Januario R.S., Ferreira L.H., McAnulty S.R., Utter A.C., Souza-Junior T.P. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. J. Int. Soc. Sports Nutr. 2017;14:5. doi: 10.1186/s12970-017-0162-2.
    1. Ayoama R., Hiruma E., Sasaki H. Effects of creatine loading on muscular strength and endurance of female softball players. J. Sports Med. Phys. Fit. 2003;43:481–487.
    1. Jones A.M., Atter T., Georg K.P. Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players. J. Sports Med. Phys. Fit. 1999;39:189–196. doi: 10.1097/00005768-199805001-00797.
    1. Ahmun R.P., Tong R.J., Grimshaw P.N. The effects of acute creatine supplementation on multiple sprint cycling and running performance in rugby players. J. Strength Cond. Res. 2005;19:92–97. doi: 10.1519/13573.1.
    1. Cox G., Mujika I., Tumilty D., Burke L. Acute creatine supplementation and performance during a field test simulating match play in elite female soccer players. Int. J. Sport Nutr. Exerc. Metab. 2002;12:33–46. doi: 10.1123/ijsnem.12.1.33.
    1. Preen D., Dawson B., Goodman C., Lawrence S., Beilby J., Ching S. Effect of creatine loading on long-term sprint exercise performance and metabolism. Med. Sci. Sports Exerc. 2001;33:814–821. doi: 10.1097/00005768-200105000-00022.
    1. Aaserud R., Gramvik P., Olsen S.R., Jensen J. Creatine supplementation delays onset of fatigue during repeated bouts of sprint running. Scand. J. Med. Sci. Sports. 1998;8:247–251. doi: 10.1111/j.1600-0838.1998.tb00478.x.
    1. Bosco C., Tihanyi J., Pucspk J., Kovacs I., Gabossy A., Colli R., Pulvirenti G., Tranquilli C., Foti C., Viru M., et al. Effect of oral creatine supplementation on jumping and running performance. Int. J. Sports Med. 1997;18:369–372. doi: 10.1055/s-2007-972648.
    1. Dabidi Roshan V., Babaei H., Hosseinzadeh M., Arendt-Nielsen L. The effect of creatine supplementation on muscle fatigue and physiological indices following intermittent swimming bouts. J. Sports Med. Phys. Fit. 2013;53:232–239.
    1. Selsby J.T., Beckett K.D., Kern M., Devor S.T. Swim performance following creatine supplementation in Division III athletes. J. Strength Cond. Res. 2003;17:421–424.
    1. Leenders N.M., Lamb D.R., Nelson T.E. Creatine supplementation and swimming performance. Int. J. Sport Nutr. 1999;9:251–262. doi: 10.1123/ijsn.9.3.251.
    1. Peyrebrune M.C., Nevill M.E., Donaldson F.J., Cosford D.J. The effects of oral creatine supplementation on performance in single and repeated sprint swimming. J. Sports Sci. 1998;16:271–279. doi: 10.1080/026404198366803.
    1. Vandenberghe K., Goris M., Van Hecke P., Van Leemputte M., Vangerven L., Hespel P. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 1997;83:2055–2063. doi: 10.1152/jappl.1997.83.6.2055.
    1. Tarnopolsky M.A., MacLennan D.P. Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. Int. J. Sport Nutr. Exerc. Metab. 2000;10:452–463. doi: 10.1123/ijsnem.10.4.452.
    1. Ziegenfuss T.N., Rogers M., Lowery L., Mullins N., Mendel R., Antonio J., Lemon P. Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA Division I athletes. Nutrition. 2002;18:397–402. doi: 10.1016/S0899-9007(01)00802-4.
    1. Benton D., Donohoe R. The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br. J. Nutr. 2011;105:1100–1105. doi: 10.1017/S0007114510004733.
    1. Johannsmeyer S., Candow D.G., Brahms C.M., Michel D., Zello G.A. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Exp. Gerontol. 2016;83:112–119. doi: 10.1016/j.exger.2016.08.005.
    1. Rodriguez N.R., DiMarco N.M., Langley S., American Dietetic A., Dietitians of C., American College of Sports Medicine N., Athletic P. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009;109:509–527.
    1. Thomas D.T., Erdman K.A., Burke L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016;116:501–528. doi: 10.1016/j.jand.2015.12.006.
    1. Gualano B., Rawson E.S., Candow D.G., Chilibeck P.D. Creatine supplementation in the aging population: Effects on skeletal muscle, bone and brain. Amino Acids. 2016;48:1793–1805. doi: 10.1007/s00726-016-2239-7.
    1. Earnest C.P., Almada A.L., Mitchell T.L. High-performance capillary electrophoresis-pure creatine monohydrate reduces blood lipids in men and women. Clin. Sci. 1996;91:113–118. doi: 10.1042/cs0910113.
    1. da Silva R.P., Leonard K.A., Jacobs R.L. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet. J. Nutr. Biochem. 2017;50:46–53. doi: 10.1016/j.jnutbio.2017.08.010.
    1. Deminice R., de Castro G.S., Francisco L.V., da Silva L.E., Cardoso J.F., Frajacomo F.T., Teodoro B.G., Dos Reis Silveira L., Jordao A.A. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: A burden of one-carbon and fatty acid metabolism. J. Nutr. Biochem. 2015;26:391–397. doi: 10.1016/j.jnutbio.2014.11.014.
    1. Deminice R., Cella P.S., Padilha C.S., Borges F.H., da Silva L.E., Campos-Ferraz P.L., Jordao A.A., Robinson J.L., Bertolo R.F., Cecchini R., et al. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids. 2016;48:2015–2024. doi: 10.1007/s00726-016-2172-9.
    1. Lawler J.M., Barnes W.S., Wu G., Song W., Demaree S. Direct antioxidant properties of creatine. Biochem. Biophys. Res. Commun. 2002;290:47–52. doi: 10.1006/bbrc.2001.6164.
    1. Rakpongsiri K., Sawangkoon S. Protective effect of creatine supplementation and estrogen replacement on cardiac reserve function and antioxidant reservation against oxidative stress in exercise-trained ovariectomized hamsters. Int. Heart J. 2008;49:343–354. doi: 10.1536/ihj.49.343.
    1. Rahimi R., Mirzaei B., Rahmani-Nia F., Salehi Z. Effects of creatine monohydrate supplementation on exercise-induced apoptosis in athletes: A randomized, double-blind, and placebo-controlled study. J. Res. Med. Sci. 2015;20:733–738. doi: 10.4103/1735-1995.168320.
    1. Deminice R., Jordao A.A. Creatine supplementation decreases plasma lipid peroxidation markers and enhances anaerobic performance in rats. Redox Rep. 2015 doi: 10.1179/1351000215Y.0000000020.
    1. Op’t Eijnde B., Urso B., Richter E.A., Greenhaff P.L., Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50:18–23. doi: 10.2337/diabetes.50.1.18.
    1. Gualano B., V D.E.S.P., Roschel H., Artioli G.G., Neves M., Jr., De Sa Pinto A.L., Da Silva M.E., Cunha M.R., Otaduy M.C., Leite Cda C., et al. Creatine in type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Med. Sci. Sports Exerc. 2011;43:770–778. doi: 10.1249/MSS.0b013e3181fcee7d.
    1. Op’t Eijnde B., Jijakli H., Hespel P., Malaisse W.J. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes. Int. J. Mol. Med. 2006;17:1077–1084. doi: 10.3892/ijmm.17.6.1077.
    1. Alves C.R., Ferreira J.C., de Siqueira-Filho M.A., Carvalho C.R., Lancha A.H., Jr., Gualano B. Creatine-induced glucose uptake in type 2 diabetes: A role for AMPK-alpha? Amino Acids. 2012;43:1803–1807. doi: 10.1007/s00726-012-1246-6.
    1. Patra S., Ghosh A., Roy S.S., Bera S., Das M., Talukdar D., Ray S., Wallimann T., Ray M. A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids. 2012;42:2319–2330. doi: 10.1007/s00726-011-0974-3.
    1. Soares J.D.P., Howell S.L., Teixeira F.J., Pimentel G.D. Dietary Amino Acids and Immunonutrition Supplementation in Cancer-Induced Skeletal Muscle Mass Depletion: A Mini-Review. Curr. Pharm. Des. 2020;26:970–978. doi: 10.2174/1381612826666200218100420.
    1. Cella P.S., Marinello P.C., Borges F.H., Ribeiro D.F., Chimin P., Testa M.T.J., Guirro P.B., Duarte J.A., Cecchini R., Guarnier F.A., et al. Creatine supplementation in Walker-256 tumor-bearing rats prevents skeletal muscle atrophy by attenuating systemic inflammation and protein degradation signaling. Eur. J. Nutr. 2020;59:661–669. doi: 10.1007/s00394-019-01933-6.
    1. Pal A., Roy A., Ray M. Creatine supplementation with methylglyoxal: A potent therapy for cancer in experimental models. Amino Acids. 2016;48:2003–2013. doi: 10.1007/s00726-016-2224-1.
    1. Canete S., San Juan A.F., Perez M., Gomez-Gallego F., Lopez-Mojares L.M., Earnest C.P., Fleck S.J., Lucia A. Does creatine supplementation improve functional capacity in elderly women? J. Strength Cond. Res. 2006;20:22–28. doi: 10.1519/R-17044.1.
    1. Candow D.G., Zello G.A., Ling B., Farthing J.P., Chilibeck P.D., McLeod K., Harris J., Johnson S. Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Res. Sports Med. 2014;22:61–74. doi: 10.1080/15438627.2013.852088.
    1. Chilibeck P.D., Candow D.G., Landeryou T., Kaviani M., Paus-Jenssen L. Effects of Creatine and Resistance Training on Bone Health in Postmenopausal Women. Med. Sci. Sports Exerc. 2015;47:1587–1595. doi: 10.1249/MSS.0000000000000571.
    1. O’Bryan K.R., Doering T.M., Morton R.W., Coffey V.G., Phillips S.M., Cox G.R. Do multi-ingredient protein supplements augment resistance training-induced gains in skeletal muscle mass and strength? A systematic review and meta-analysis of 35 trials. Br. J. Sports Med. 2020;54:573–581. doi: 10.1136/bjsports-2018-099889.
    1. Nilsson M.I., Mikhail A., Lan L., Di Carlo A., Hamilton B., Barnard K., Hettinga B.P., Hatcher E., Tarnopolsky M.G., Nederveen J.P., et al. A Five-Ingredient Nutritional Supplement and Home-Based Resistance Exercise Improve Lean Mass and Strength in Free-Living Elderly. Nutrients. 2020;12:2391. doi: 10.3390/nu12082391.
    1. Gielen E., Beckwee D., Delaere A., De Breucker S., Vandewoude M., Bautmans I., Sarcopenia Guidelines Development Group of the Belgian Society of Geriatrics Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Nutr. Rev. 2020 doi: 10.1093/nutrit/nuaa011.
    1. Evans M., Guthrie N., Pezzullo J., Sanli T., Fielding R.A., Bellamine A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: A randomized, double-blind placebo-controlled study. Nutr. Metab. 2017;14:7. doi: 10.1186/s12986-016-0158-y.
    1. Sales L.P., Pinto A.J., Rodrigues S.F., Alvarenga J.C., Goncalves N., Sampaio-Barros M.M., Benatti F.B., Gualano B., Rodrigues Pereira R.M. Creatine Supplementation (3 g/d) and Bone Health in Older Women: A 2-Year, Randomized, Placebo-Controlled Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2020;75:931–938. doi: 10.1093/gerona/glz162.
    1. Castoldi R.C., Ozaki G.A.T., Garcia T.A., Giometti I.C., Koike T.E., Camargo R.C.T., Dos Santos Pereira J.D.A., Constantino C.J.L., Louzada M.J.Q., Camargo Filho J.C.S., et al. Effects of muscular strength training and growth hormone (GH) supplementation on femoral bone tissue: Analysis by Raman spectroscopy, dual-energy X-ray absorptiometry, and mechanical resistance. Lasers Med. Sci. 2020;35:345–354. doi: 10.1007/s10103-019-02821-5.
    1. Laskou F., Dennison E. Interaction of Nutrition and Exercise on Bone and Muscle. Eur. Endocrinol. 2019;15:11–12. doi: 10.17925/EE.2019.15.1.11.
    1. Candow D.G., Forbes S.C., Vogt E. Effect of pre-exercise and post-exercise creatine supplementation on bone mineral content and density in healthy aging adults. Exp. Gerontol. 2019;119:89–92. doi: 10.1016/j.exger.2019.01.025.
    1. Rawson E.S., Miles M.P., Larson-Meyer D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:188–199. doi: 10.1123/ijsnem.2017-0340.
    1. Forbes S.C., Chilibeck P.D., Candow D.G. Creatine Supplementation During Resistance Training Does Not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-Analysis. Front. Nutr. 2018;5:27. doi: 10.3389/fnut.2018.00027.
    1. Cornish S.M., Peeler J.D. No effect of creatine monohydrate supplementation on inflammatory and cartilage degradation biomarkers in individuals with knee osteoarthritis. Nutr. Res. 2018;51:57–66. doi: 10.1016/j.nutres.2017.12.010.
    1. Alves C.R., Santiago B.M., Lima F.R., Otaduy M.C., Calich A.L., Tritto A.C., de Sa Pinto A.L., Roschel H., Leite C.C., Benatti F.B., et al. Creatine supplementation in fibromyalgia: A randomized, double-blind, placebo-controlled trial. Arthritis Care Res. 2013;65:1449–1459. doi: 10.1002/acr.22020.
    1. Bell K.E., Fang H., Snijders T., Allison D.J., Zulyniak M.A., Chabowski A., Parise G., Phillips S.M., Heisz J.J. A Multi-Ingredient Nutritional Supplement in Combination With Resistance Exercise and High-Intensity Interval Training Improves Cognitive Function and Increases N-3 Index in Healthy Older Men: A Randomized Controlled Trial. Front. Aging Neurosci. 2019;11:107. doi: 10.3389/fnagi.2019.00107.
    1. Scholey A. Nutrients for neurocognition in health and disease: Measures, methodologies and mechanisms. Proc. Nutr. Soc. 2018;77:73–83. doi: 10.1017/S0029665117004025.
    1. Merege-Filho C.A., Otaduy M.C., de Sa-Pinto A.L., de Oliveira M.O., de Souza Goncalves L., Hayashi A.P., Roschel H., Pereira R.M., Silva C.A., Brucki S.M., et al. Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study. Appl. Physiol. Nutr. Metab. 2017;42:128–134. doi: 10.1139/apnm-2016-0406.
    1. Turner C.E., Byblow W.D., Gant N. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J. Neurosci. 2015;35:1773–1780. doi: 10.1523/JNEUROSCI.3113-14.2015.
    1. Rawson E.S., Lieberman H.R., Walsh T.M., Zuber S.M., Harhart J.M., Matthews T.C. Creatine supplementation does not improve cognitive function in young adults. Physiol. Behav. 2008;95:130–134. doi: 10.1016/j.physbeh.2008.05.009.
    1. McMorris T., Harris R.C., Howard A.N., Langridge G., Hall B., Corbett J., Dicks M., Hodgson C. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Physiol. Behav. 2007;90:21–28. doi: 10.1016/j.physbeh.2006.08.024.
    1. Roitman S., Green T., Osher Y., Karni N., Levine J. Creatine monohydrate in resistant depression: A preliminary study. Bipolar Disord. 2007;9:754–758. doi: 10.1111/j.1399-5618.2007.00532.x.
    1. D’Anci K.E., Allen P.J., Kanarek R.B. A potential role for creatine in drug abuse? Mol. Neurobiol. 2011;44:136–141. doi: 10.1007/s12035-011-8176-2.
    1. Balestrino M., Adriano E. Beyond sports: Efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med. Res. Rev. 2019;39:2427–2459. doi: 10.1002/med.21590.
    1. Toniolo R.A., Silva M., Fernandes F.B.F., Amaral J., Dias R.D.S., Lafer B. A randomized, double-blind, placebo-controlled, proof-of-concept trial of creatine monohydrate as adjunctive treatment for bipolar depression. J. Neural Transm. 2018;125:247–257. doi: 10.1007/s00702-017-1817-5.
    1. Brose A., Parise G., Tarnopolsky M.A. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2003;58:11–19. doi: 10.1093/gerona/58.1.B11.
    1. McMorris T., Harris R.C., Swain J., Corbett J., Collard K., Dyson R.J., Dye L., Hodgson C., Draper N. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology. 2006;185:93–103. doi: 10.1007/s00213-005-0269-z.
    1. Bernat P., Candow D.G., Gryzb K., Butchart S., Schoenfeld B.J., Bruno P. Effects of high-velocity resistance training and creatine supplementation in untrained healthy aging males. Appl. Physiol. Nutr. Metab. 2019;44:1246–1253. doi: 10.1139/apnm-2019-0066.
    1. Forbes S.C., Candow D.G., Krentz J.R., oberts M.D., Young K.C. Changes in Fat Mass Following Creatine Supplementation and Resistance Training in Adults ≥50 Years of Age: A Meta-Analysis. J. Funct. Morphol. Kinesio. 2019;4:62. doi: 10.3390/jfmk4030062.
    1. Rae C., Digney A.L., McEwan S.R., Bates T.C. Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proc. Biol. Sci. 2003;270:2147–2150. doi: 10.1098/rspb.2003.2492.
    1. Ling J., Kritikos M., Tiplady B. Cognitive effects of creatine ethyl ester supplementation. Behav. Pharmacol. 2009;20:673–679. doi: 10.1097/FBP.0b013e3283323c2a.
    1. Robinson J.L., McBreairty L.E., Ryan R.A., Randunu R., Walsh C.J., Martin G.M., Brunton J.A., Bertolo R.F. Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs. PLoS ONE. 2020;15:e0226806. doi: 10.1371/journal.pone.0226806.
    1. Watanabe A., Kato N., Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci. Res. 2002;42:279–285.
    1. Rooney K., Bryson J., Phuyal J., Denyer G., Caterson I., Thompson C. Creatine supplementation alters insulin secretion and glucose homeostasis in vivo. Metabolism. 2002;51:518–522. doi: 10.1053/meta.2002.31330.
    1. Newman J.E., Hargreaves M., Garnham A., Snow R.J. Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med. Sci. Sports Exerc. 2003;35:69–74. doi: 10.1097/00005768-200301000-00012.
    1. Greenwood M., Kreider R.B., Earnest C.P., Rasmussen C., Almada A. Differences in creatine retention among three nutritional formulations of oral creatine supplements. J. Exerc. Physiol. Online. 2003;6:37–43.
    1. Steenge G.R., Simpson E.J., Greenhaff P.L. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J. Appl. Physiol. 2000;89:1165–1171. doi: 10.1152/jappl.2000.89.3.1165.
    1. Nelson A.G., Arnall D.A., Kokkonen J., Day R., Evans J. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med. Sci. Sports Exerc. 2001;33:1096–1100. doi: 10.1097/00005768-200107000-00005.
    1. Gualano B., Artioli G.G., Poortmans J.R., Lancha Junior A.H. Exploring the therapeutic role of creatine supplementation. Amino Acids. 2010;38:31–44. doi: 10.1007/s00726-009-0263-6.
    1. Hultman J., Ronquist G., Forsberg J.O., Hansson H.E. Myocardial energy restoration of ischemic damage by administration of phosphoenolpyruvate during reperfusion. A study in a paracorporeal rat heart model. Eur. Surg. Res. 1983;15:200–207.
    1. Thelin S., Hultman J., Ronquist G., Hansson H.E. Metabolic and functional effects of creatine phosphate in cardioplegic solution. Studies on rat hearts during and after normothermic ischemia. Scand. J. Thorac. Cardiovasc. Surg. 1987;21:39–45.
    1. Osbakken M., Ito K., Zhang D., Ponomarenko I., Ivanics T., Jahngen E.G., Cohn M. Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart. Cardiology. 1992;80:184–195.
    1. Thorelius J., Thelin S., Ronquist G., Halden E., Hansson H.E. Biochemical and functional effects of creatine phosphate in cardioplegic solution during aortic valve surgery–A clinical study. Thorac. Cardiovasc. Surg. 1992;40:10–13. doi: 10.1055/s-2007-1020103.
    1. Boudina S., Laclau M.N., Tariosse L., Daret D., Gouverneur G., Bonoron-Adele S., Saks V.A., Dos Santos P. Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H821–H831. doi: 10.1152/ajpheart.00471.2001.
    1. Laclau M.N., Boudina S., Thambo J.B., Tariosse L., Gouverneur G., Bonoron-Adele S., Saks V.A., Garlid K.D., Dos Santos P. Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase. J. Mol. Cell Cardiol. 2001;33:947–956. doi: 10.1006/jmcc.2001.1357.
    1. Conorev E.A., Sharov V.G., Saks V.A. Improvement in contractile recovery of isolated rat heart after cardioplegic ischaemic arrest with endogenous phosphocreatine: Involvement of antiperoxidative effect? Cardiovasc. Res. 1991;25:164–171. doi: 10.1093/cvr/25.2.164.
    1. Sharov V.G., Saks V.A., Kupriyanov V.V., Lakomkin V.L., Kapelko V.I., Steinschneider A., Javadov S.A. Protection of ischemic myocardium by exogenous phosphocreatine. I. Morphologic and phosphorus 31-nuclear magnetic resonance studies. J. Thorac. Cardiovasc. Surg. 1987;94:749–761. doi: 10.1016/S0022-5223(19)36191-4.
    1. Anyukhovsky E.P., Javadov S.A., Preobrazhensky A.N., Beloshapko G.G., Rosenshtraukh L.V., Saks V.A. Effect of phosphocreatine and related compounds on the phospholipid metabolism of ischemic heart. Biochem. Med. Metab. Biol. 1986;35:327–334.
    1. Sharov V.G., Afonskaya N.I., Ruda M.Y., Cherpachenko N.M., Pozin E., Markosyan R.A., Shepeleva I.I., Samarenko M.B., Saks V.A. Protection of ischemic myocardium by exogenous phosphocreatine (neoton): Pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes, and antithrombotic action. Biochem. Med. Metab. Biol. 1986;35:101–114. doi: 10.1016/0885-4505(86)90064-2.
    1. Perasso L., Spallarossa P., Gandolfo C., Ruggeri P., Balestrino M. Therapeutic use of creatine in brain or heart ischemia: Available data and future perspectives. Med. Res. Rev. 2013;33:336–363. doi: 10.1002/med.20255.
    1. Gordon A., Hultman E., Kaijser L., Kristjansson S., Rolf C.J., Nyquist O., Sylven C. Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc. Res. 1995;30:413–418. doi: 10.1016/S0008-6363(95)00062-3.
    1. Andrews R., Greenhaff P., Curtis S., Perry A., Cowley A.J. The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Eur. Heart J. 1998;19:617–622. doi: 10.1053/euhj.1997.0767.
    1. Kuethe F., Krack A., Richartz B.M., Figulla H.R. Creatine supplementation improves muscle strength in patients with congestive heart failure. Pharmazie. 2006;61:218–222.
    1. Fumagalli S., Fattirolli F., Guarducci L., Cellai T., Baldasseroni S., Tarantini F., Di Bari M., Masotti G., Marchionni N. Coenzyme Q10 terclatrate and creatine in chronic heart failure: A randomized, placebo-controlled, double-blind study. Clin. Cardiol. 2011;34:211–217. doi: 10.1002/clc.20846.
    1. Carvalho A.P., Rassi S., Fontana K.E., Kde S.C., Feitosa R.H. Influence of creatine supplementation on the functional capacity of patients with heart failure. Arq. Bras. Cardiol. 2012;99:623–629. doi: 10.1590/S0066-782X2012005000056.
    1. Sykut-Cegielska J., Gradowska W., Mercimek-Mahmutoglu S., Stockler-Ipsiroglu S. Biochemical and clinical characteristics of creatine deficiency syndromes. Acta Biochim. Pol. 2004;51:875–882.
    1. Freissmuth M., Stockner T., Sucic S. SLC6 Transporter Folding Diseases and Pharmacochaperoning. Handb. Exp. Pharmacol. 2018;245:249–270. doi: 10.1007/164_2017_71.
    1. van de Kamp J.M., Mancini G.M., Salomons G.S. X-linked creatine transporter deficiency: Clinical aspects and pathophysiology. J. Inherit. Metab. Dis. 2014;37:715–733. doi: 10.1007/s10545-014-9713-8.
    1. Mercimek-Mahmutoglu S., Salomons G.S. Creatine Deficiency Syndromes. In: Pagon R.A., Adam M.P., Ardinger H.H., Wallace S.E., Amemiya A., Bean L.J.H., Bird T.D., Ledbetter N., Mefford H.C., Smith R.J.H., editors. GeneReviews(R) University of Washington; Seattle, WA, USA: 1993.
    1. Stockler-Ipsiroglu S., van Karnebeek C.D. Cerebral creatine deficiencies: A group of treatable intellectual developmental disorders. Semin. Neurol. 2014;34:350–356. doi: 10.1055/s-0034-1386772.
    1. Joncquel-Chevalier Curt M., Voicu P.M., Fontaine M., Dessein A.F., Porchet N., Mention-Mulliez K., Dobbelaere D., Soto-Ares G., Cheillan D., Vamecq J. Creatine biosynthesis and transport in health and disease. Biochimie. 2015;119:146–165. doi: 10.1016/j.biochi.2015.10.022.
    1. Cameron J.M., Levandovskiy V., Roberts W., Anagnostou E., Scherer S., Loh A., Schulze A. Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder. Int. J. Mol. Sci. 2017;18:1665. doi: 10.3390/ijms18081665.
    1. Salazar M.D., Zelt N.B., Saldivar R., Kuntz C.P., Chen S., Penn W.D., Bonneau R., Leman J.K., Schlebach J.P. Classification of the Molecular Defects Associated with Pathogenic Variants of the SLC6A8 Creatine Transporter. Biochemistry. 2020;59:1367–1377. doi: 10.1021/acs.biochem.9b00956.
    1. Longo N., Ardon O., Vanzo R., Schwartz E., Pasquali M. Disorders of creatine transport and metabolism. Am. J. Med. Genet. C Semin Med. Genet. 2011;157C:72–78. doi: 10.1002/ajmg.c.30292.
    1. Nasrallah F., Feki M., Kaabachi N. Creatine and creatine deficiency syndromes: Biochemical and clinical aspects. Pediatr. Neurol. 2010;42:163–171. doi: 10.1016/j.pediatrneurol.2009.07.015.
    1. Mercimek-Mahmutoglu S., Stoeckler-Ipsiroglu S., Adami A., Appleton R., Araujo H.C., Duran M., Ensenauer R., Fernandez-Alvarez E., Garcia P., Grolik C., et al. GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67:480–484. doi: 10.1212/.
    1. Stromberger C., Bodamer O.A., Stockler-Ipsiroglu S. Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J. Inherit. Metab. Dis. 2003;26:299–308. doi: 10.1023/A:1024453704800.
    1. Bianchi M.C., Tosetti M., Battini R., Leuzzi V., Alessandri M.G., Carducci C., Antonozzi I., Cioni G. Treatment monitoring of brain creatine deficiency syndromes: A 1H- and 31P-MR spectroscopy study. AJNR Am. J. Neuroradiol. 2007;28:548–554.
    1. Battini R., Alessandri M.G., Leuzzi V., Moro F., Tosetti M., Bianchi M.C., Cioni G. Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: Early treatment can prevent phenotypic expression of the disease. J. Pediatr. 2006;148:828–830. doi: 10.1016/j.jpeds.2006.01.043.
    1. Stockler-Ipsiroglu S., van Karnebeek C., Longo N., Korenke G.C., Mercimek-Mahmutoglu S., Marquart I., Barshop B., Grolik C., Schlune A., Angle B., et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol. Genet. Metab. 2014;111:16–25. doi: 10.1016/j.ymgme.2013.10.018.
    1. Valtonen M., Nanto-Salonen K., Jaaskelainen S., Heinanen K., Alanen A., Heinonen O.J., Lundbom N., Erkintalo M., Simell O. Central nervous system involvement in gyrate atrophy of the choroid and retina with hyperornithinaemia. J. Inherit. Metab. Dis. 1999;22:855–866. doi: 10.1023/A:1005602405349.
    1. Nanto-Salonen K., Komu M., Lundbom N., Heinanen K., Alanen A., Sipila I., Simell O. Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology. 1999;53:303–307. doi: 10.1212/WNL.53.2.303.
    1. Heinanen K., Nanto-Salonen K., Komu M., Erkintalo M., Alanen A., Heinonen O.J., Pulkki K., Nikoskelainen E., Sipila I., Simell O. Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur. J. Clin. Investig. 1999;29:1060–1065. doi: 10.1046/j.1365-2362.1999.00569.x.
    1. Vannas-Sulonen K., Sipila I., Vannas A., Simell O., Rapola J. Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology. 1985;92:1719–1727. doi: 10.1016/S0161-6420(85)34098-8.
    1. Sipila I., Rapola J., Simell O., Vannas A. Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N. Engl. J. Med. 1981;304:867–870. doi: 10.1056/NEJM198104093041503.
    1. Evangeliou A., Vasilaki K., Karagianni P., Nikolaidis N. Clinical applications of creatine supplementation on paediatrics. Curr. Pharm. Biotechnol. 2009;10:683–690. doi: 10.2174/138920109789542075.
    1. Verbruggen K.T., Knijff W.A., Soorani-Lunsing R.J., Sijens P.E., Verhoeven N.M., Salomons G.S., Goorhuis-Brouwer S.M., van Spronsen F.J. Global developmental delay in guanidionacetate methyltransferase deficiency: Differences in formal testing and clinical observation. Eur. J. Pediatr. 2007;166:921–925. doi: 10.1007/s00431-006-0340-8.
    1. Ganesan V., Johnson A., Connelly A., Eckhardt S., Surtees R.A. Guanidinoacetate methyltransferase deficiency: New clinical features. Pediatr. Neurol. 1997;17:155–157. doi: 10.1016/S0887-8994(97)00083-0.
    1. Ensenauer R., Thiel T., Schwab K.O., Tacke U., Stockler-Ipsiroglu S., Schulze A., Hennig J., Lehnert W. Guanidinoacetate methyltransferase deficiency: Differences of creatine uptake in human brain and muscle. Mol. Genet. Metab. 2004;82:208–213. doi: 10.1016/j.ymgme.2004.04.005.
    1. Adhihetty P.J., Beal M.F. Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromol. Med. 2008;10:275–290. doi: 10.1007/s12017-008-8053-y.
    1. Verbessem P., Lemiere J., Eijnde B.O., Swinnen S., Vanhees L., Van Leemputte M., Hespel P., Dom R. Creatine supplementation in Huntington’s disease: A placebo-controlled pilot trial. Neurology. 2003;61:925–930. doi: 10.1212/01.WNL.0000090629.40891.4B.
    1. Dedeoglu A., Kubilus J.K., Yang L., Ferrante K.L., Hersch S.M., Beal M.F., Ferrante R.J. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J. Neurochem. 2003;85:1359–1367.
    1. Andreassen O.A., Dedeoglu A., Ferrante R.J., Jenkins B.G., Ferrante K.L., Thomas M., Friedlich A., Browne S.E., Schilling G., Borchelt D.R., et al. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol. Dis. 2001;8:479–491. doi: 10.1006/nbdi.2001.0406.
    1. Ferrante R.J., Andreassen O.A., Jenkins B.G., Dedeoglu A., Kuemmerle S., Kubilus J.K., Kaddurah-Daouk R., Hersch S.M., Beal M.F. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci. 2000;20:4389–4397. doi: 10.1523/JNEUROSCI.20-12-04389.2000.
    1. Matthews R.T., Yang L., Jenkins B.G., Ferrante R.J., Rosen B.R., Kaddurah-Daouk R., Beal M.F. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J. Neurosci. 1998;18:156–163.
    1. Bender A., Samtleben W., Elstner M., Klopstock T. Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr. Res. 2008;28:172–178. doi: 10.1016/j.nutres.2008.01.001.
    1. Bender A., Koch W., Elstner M., Schombacher Y., Bender J., Moeschl M., Gekeler F., Muller-Myhsok B., Gasser T., Tatsch K., et al. Creatine supplementation in Parkinson disease: A placebo-controlled randomized pilot trial. Neurology. 2006;67:1262–1264. doi: 10.1212/01.wnl.0000238518.34389.12.
    1. Duarte-Silva S., Neves-Carvalho A., Soares-Cunha C., Silva J.M., Teixeira-Castro A., Vieira R., Silva-Fernandes A., Maciel P. Neuroprotective Effects of Creatine in the CMVMJD135 Mouse Model of Spinocerebellar Ataxia Type 3. Mov. Disord. 2018;33:815–826. doi: 10.1002/mds.27292.
    1. Komura K., Hobbiebrunken E., Wilichowski E.K., Hanefeld F.A. Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr. Neurol. 2003;28:53–58. doi: 10.1016/S0887-8994(02)00469-1.
    1. Tarnopolsky M.A., Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve. 1999;22:1228–1233. doi: 10.1002/(SICI)1097-4598(199909)22:9<1228::AID-MUS9>;2-6.
    1. Tarnopolsky M.A., Roy B.D., MacDonald J.R. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve. 1997;20:1502–1509. doi: 10.1002/(SICI)1097-4598(199712)20:12<1502::AID-MUS4>;2-C.
    1. Gowayed M.A., Mahmoud S.A., El-Sayed Y., Abu-Samra N., Kamel M.A. Enhanced mitochondrial biogenesis is associated with the ameliorative action of creatine supplementation in rat soleus and cardiac muscles. Exp. Ther. Med. 2020;19:384–392. doi: 10.3892/etm.2019.8173.
    1. Andreassen O.A., Jenkins B.G., Dedeoglu A., Ferrante K.L., Bogdanov M.B., Kaddurah-Daouk R., Beal M.F. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J. Neurochem. 2001;77:383–390. doi: 10.1046/j.1471-4159.2001.00188.x.
    1. Choi J.K., Kustermann E., Dedeoglu A., Jenkins B.G. Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur. J. Neurosci. 2009;30:2143–2150. doi: 10.1111/j.1460-9568.2009.07015.x.
    1. Derave W., Van Den Bosch L., Lemmens G., Eijnde B.O., Robberecht W., Hespel P. Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: Effects of creatine treatment. Neurobiol. Dis. 2003;13:264–272. doi: 10.1016/S0969-9961(03)00041-X.
    1. Drory V.E., Gross D. No effect of creatine on respiratory distress in amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler Other Motor. Neuron. Disord. 2002;3:43–46. doi: 10.1080/146608202317576534.
    1. Ellis A.C., Rosenfeld J. The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders. CNS Drugs. 2004;18:967–980.
    1. Mazzini L., Balzarini C., Colombo R., Mora G., Pastore I., De Ambrogio R., Caligari M. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: Preliminary results. J. Neurol. Sci. 2001;191:139–144. doi: 10.1016/S0022-510X(01)00611-6.
    1. Vielhaber S., Kaufmann J., Kanowski M., Sailer M., Feistner H., Tempelmann C., Elger C.E., Heinze H.J., Kunz W.S. Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp. Neurol. 2001;172:377–382. doi: 10.1006/exnr.2001.7797.
    1. Hijikata Y., Katsuno M., Suzuki K., Hashizume A., Araki A., Yamada S., Inagaki T., Ito D., Hirakawa A., Kinoshita F., et al. Treatment with Creatine Monohydrate in Spinal and Bulbar Muscular Atrophy: Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial. JMIR Res. Protoc. 2018;7:e69. doi: 10.2196/resprot.8655.
    1. Ogborn D.I., Smith K.J., Crane J.D., Safdar A., Hettinga B.P., Tupler R., Tarnopolsky M.A. Effects of creatine and exercise on skeletal muscle of FRG1-transgenic mice. Can. J. Neurol Sci. 2012;39:225–231. doi: 10.1017/S0317167100013275.
    1. Louis M., Lebacq J., Poortmans J.R., Belpaire-Dethiou M.C., Devogelaer J.P., Van Hecke P., Goubel F., Francaux M. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve. 2003;27:604–610. doi: 10.1002/mus.10355.
    1. Banerjee B., Sharma U., Balasubramanian K., Kalaivani M., Kalra V., Jagannathan N.R. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Magn. Reson. Imaging. 2010;28:698–707. doi: 10.1016/j.mri.2010.03.008.
    1. Felber S., Skladal D., Wyss M., Kremser C., Koller A., Sperl W. Oral creatine supplementation in Duchenne muscular dystrophy: A clinical and 31P magnetic resonance spectroscopy study. Neurol. Res. 2000;22:145–150. doi: 10.1080/01616412.2000.11741051.
    1. Radley H.G., De Luca A., Lynch G.S., Grounds M.D. Duchenne muscular dystrophy: Focus on pharmaceutical and nutritional interventions. Int. J. Biochem. Cell Biol. 2007;39:469–477. doi: 10.1016/j.biocel.2006.09.009.
    1. Tarnopolsky M.A., Mahoney D.J., Vajsar J., Rodriguez C., Doherty T.J., Roy B.D., Biggar D. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology. 2004;62:1771–1777. doi: 10.1212/01.WNL.0000125178.18862.9D.
    1. Kley R.A., Tarnopolsky M.A., Vorgerd M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD004760.pub4.
    1. Pan J.W., Takahashi K. Cerebral energetic effects of creatine supplementation in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R1745–R1750. doi: 10.1152/ajpregu.00717.2006.
    1. Ipsiroglu O.S., Stromberger C., Ilas J., Hoger H., Muhl A., Stockler-Ipsiroglu S. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci. 2001;69:1805–1815. doi: 10.1016/S0024-3205(01)01268-1.
    1. Kley R.A., Vorgerd M., Tarnopolsky M.A. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 2007 doi: 10.1002/14651858.CD004760.pub2.
    1. Adcock K.H., Nedelcu J., Loenneker T., Martin E., Wallimann T., Wagner B.P. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev. Neurosci. 2002;24:382–388. doi: 10.1159/000069043.
    1. Prass K., Royl G., Lindauer U., Freyer D., Megow D., Dirnagl U., Stockler-Ipsiroglu G., Wallimann T., Priller J. Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J. Cereb. Blood Flow Metab. 2007;27:452–459. doi: 10.1038/sj.jcbfm.9600351.
    1. Zhu S., Li M., Figueroa B.E., Liu A., Stavrovskaya I.G., Pasinelli P., Beal M.F., Brown R.H., Jr., Kristal B.S., Ferrante R.J., et al. Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J. Neurosci. 2004;24:5909–5912. doi: 10.1523/JNEUROSCI.1278-04.2004.
    1. Allah Yar R., Akbar A., Iqbal F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res. 2015;1595:92–100. doi: 10.1016/j.brainres.2014.11.017.
    1. Ainsley Dean P.J., Arikan G., Opitz B., Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion. 2017;2:CNC34. doi: 10.2217/cnc-2016-0016.
    1. Freire Royes L.F., Cassol G. The Effects of Creatine Supplementation and Physical Exercise on Traumatic Brain Injury. Mini Rev. Med. Chem. 2016;16:29–39. doi: 10.2174/1389557515666150722101926.
    1. Sullivan P.G., Geiger J.D., Mattson M.P., Scheff S.W. Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 2000;48:723–729. doi: 10.1002/1531-8249(200011)48:5<723::AID-ANA5>;2-W.
    1. Hausmann O.N., Fouad K., Wallimann T., Schwab M.E. Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord. 2002;40:449–456. doi: 10.1038/sj.sc.3101330.
    1. Amorim S., Teixeira V.H., Corredeira R., Cunha M., Maia B., Margalho P., Pires J. Creatine or vitamin D supplementation in individuals with a spinal cord injury undergoing resistance training: A double-blinded, randomized pilot trial. J. Spinal Cord Med. 2018;41:471–478. doi: 10.1080/10790268.2017.1372058.
    1. Rabchevsky A.G., Sullivan P.G., Fugaccia I., Scheff S.W. Creatine diet supplement for spinal cord injury: Influences on functional recovery and tissue sparing in rats. J. Neurotrauma. 2003;20:659–669. doi: 10.1089/089771503322144572.
    1. Jacobs P.L., Mahoney E.T., Cohn K.A., Sheradsky L.F., Green B.A. Oral creatine supplementation enhances upper extremity work capacity in persons with cervical-level spinal cord injury. Arch. Phys. Med. Rehabil. 2002;83:19–23. doi: 10.1053/apmr.2002.26829.
    1. Kendall R.W., Jacquemin G., Frost R., Burns S.P. Creatine supplementation for weak muscles in persons with chronic tetraplegia: A randomized double-blind placebo-controlled crossover trial. J. Spinal Cord Med. 2005;28:208–213.
    1. Perret C., Mueller G., Knecht H. Influence of creatine supplementation on 800 m wheelchair performance: A pilot study. Spinal Cord. 2006;44:275–279. doi: 10.1038/sj.sc.3101840.
    1. Fuld J.P., Kilduff L.P., Neder J.A., Pitsiladis Y., Lean M.E., Ward S.A., Cotton M.M. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax. 2005;60:531–537. doi: 10.1136/thx.2004.030452.
    1. Griffiths T.L., Proud D. Creatine supplementation as an exercise performance enhancer for patients with COPD? An idea to run with. Thorax. 2005;60:525–526. doi: 10.1136/thx.2004.034355.
    1. Faager G., Soderlund K., Skold C.M., Rundgren S., Tollback A., Jakobsson P. Creatine supplementation and physical training in patients with COPD: A double blind, placebo-controlled study. Int. J. Chron. Obs. Pulmon Dis. 2006;1:445–453. doi: 10.2147/copd.2006.1.4.445.
    1. Cooke M.B., Rybalka E., Williams A.D., Cribb P.J., Hayes A. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2009;6:13. doi: 10.1186/1550-2783-6-13.
    1. Roy B.D., de Beer J., Harvey D., Tarnopolsky M.A. Creatine monohydrate supplementation does not improve functional recovery after total knee arthroplasty. Arch. Phys. Med. Rehabil. 2005;86:1293–1298. doi: 10.1016/j.apmr.2005.01.005.
    1. Tyler T.F., Nicholas S.J., Hershman E.B., Glace B.W., Mullaney M.J., McHugh M.P. The effect of creatine supplementation on strength recovery after anterior cruciate ligament (ACL) reconstruction: A randomized, placebo-controlled, double-blind trial. Am. J. Sports Med. 2004;32:383–388. doi: 10.1177/0363546503261731.
    1. Ellery S.J., LaRosa D.A., Cullen-McEwen L.A., Brown R.D., Snow R.J., Walker D.W., Kett M.M., Dickinson H. Renal dysfunction in early adulthood following birth asphyxia in male spiny mice, and its amelioration by maternal creatine supplementation during pregnancy. Pediatr. Res. 2017 doi: 10.1038/pr.2016.268.
    1. LaRosa D.A., Ellery S.J., Snow R.J., Walker D.W., Dickinson H. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: A study of structure and function of hind limb muscle in the spiny mouse. Pediatr. Res. 2016;80:852–860. doi: 10.1038/pr.2016.153.
    1. Ellery S.J., LaRosa D.A., Kett M.M., Della Gatta P.A., Snow R.J., Walker D.W., Dickinson H. Dietary creatine supplementation during pregnancy: A study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice. Amino Acids. 2016;48:1819–1830. doi: 10.1007/s00726-015-2150-7.
    1. Dickinson H., Ellery S., Ireland Z., LaRosa D., Snow R., Walker D.W. Creatine supplementation during pregnancy: Summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150. doi: 10.1186/1471-2393-14-150.
    1. Bortoluzzi V.T., de Franceschi I.D., Rieger E., Wannmacher C.M. Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem. Res. 2014;39:1594–1602. doi: 10.1007/s11064-014-1353-8.
    1. Vallet J.L., Miles J.R., Rempel L.A. Effect of creatine supplementation during the last week of gestation on birth intervals, stillbirth, and preweaning mortality in pigs. J. Anim Sci. 2013;91:2122–2132. doi: 10.2527/jas.2012-5610.
    1. Ellery S.J., Ireland Z., Kett M.M., Snow R., Walker D.W., Dickinson H. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney. Pediatr. Res. 2013;73:201–208. doi: 10.1038/pr.2012.174.
    1. Dickinson H., Ireland Z.J., Larosa D.A., O’Connell B.A., Ellery S., Snow R., Walker D.W. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse. Reprod. Sci. 2013;20:1096–1102. doi: 10.1177/1933719113477478.
    1. Ireland Z., Castillo-Melendez M., Dickinson H., Snow R., Walker D.W. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience. 2011;194:372–379. doi: 10.1016/j.neuroscience.2011.05.012.
    1. De Guingand D.L., Ellery S.J., Davies-Tuck M.L., Dickinson H. Creatine and pregnancy outcomes, a prospective cohort study in low-risk pregnant women: Study protocol. BMJ Open. 2019;9:e026756. doi: 10.1136/bmjopen-2018-026756.
    1. de Guingand D.L., Palmer K.R., Bilardi J.E., Ellery S.J. Acceptability of dietary or nutritional supplementation in pregnancy (ADONS)—Exploring the consumer’s perspective on introducing creatine monohydrate as a pregnancy supplement. Midwifery. 2020;82:102599. doi: 10.1016/j.midw.2019.102599.
    1. de Guingand D.L., Palmer K.R., Snow R.J., Davies-Tuck M.L., Ellery S.J. Risk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-Analysis. Nutrients. 2020;12 doi: 10.3390/nu12061780.
    1. Jagim A.R., Stecker R.A., Harty P.S., Erickson J.L., Kerksick C.M. Safety of Creatine Supplementation in Active Adolescents and Youth: A Brief Review. Front. Nutr. 2018;5:115. doi: 10.3389/fnut.2018.00115.
    1. Rawson E.S. The safety and efficacy of creatine monohydrate supplementation. Sport Sci. Exch. 2018;29:1–6.
    1. Bohnhorst B., Geuting T., Peter C.S., Dordelmann M., Wilken B., Poets C.F. Randomized, controlled trial of oral creatine supplementation (not effective) for apnea of prematurity. Pediatrics. 2004;113:e303–e307. doi: 10.1542/peds.113.4.e303.
    1. Leland K.M., McDonald T.L., Drescher K.M. Effect of creatine, creatinine, and creatine ethyl ester on TLR expression in macrophages. Int. Immunopharmacol. 2011;11:1341–1347. doi: 10.1016/j.intimp.2011.04.018.
    1. Beraud D., Maguire-Zeiss K.A. Misfolded alpha-synuclein and Toll-like receptors: Therapeutic targets for Parkinson’s disease. Parkinsonism. Relat. Disord. 2012;18(Suppl. 1):S17–S20. doi: 10.1016/S1353-8020(11)70008-6.
    1. De Paola M., Sestito S.E., Mariani A., Memo C., Fanelli R., Freschi M., Bendotti C., Calabrese V., Peri F. Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model. Pharmacol. Res. 2016;103:180–187. doi: 10.1016/j.phrs.2015.11.020.
    1. Bassit R.A., Curi R., Costa Rosa L.F. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids. 2008;35:425–431. doi: 10.1007/s00726-007-0582-4.
    1. Deminice R., Rosa F.T., Franco G.S., Jordao A.A., de Freitas E.C. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29:1127–1132. doi: 10.1016/j.nut.2013.03.003.
    1. Santos R.V., Bassit R.A., Caperuto E.C., Costa Rosa L.F. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sci. 2004;75:1917–1924. doi: 10.1016/j.lfs.2003.11.036.
    1. Garcia M., Santos-Dias A., Bachi A.L.L., Oliveira-Junior M.C., Andrade-Souza A.S., Ferreira S.C., Aquino-Junior J.C.J., Almeida F.M., Rigonato-Oliveira N.C., Oliveira A.P.L., et al. Creatine supplementation impairs airway inflammation in an experimental model of asthma involving P2 x 7 receptor. Eur. J. Immunol. 2019;49:928–939. doi: 10.1002/eji.201847657.
    1. Vieira R.P., Duarte A.C., Claudino R.C., Perini A., Santos A.B., Moriya H.T., Arantes-Costa F.M., Martins M.A., Carvalho C.R., Dolhnikoff M. Creatine supplementation exacerbates allergic lung inflammation and airway remodeling in mice. Am. J. Respir. Cell Mol. Biol. 2007;37:660–667. doi: 10.1165/rcmb.2007-0108OC.
    1. Almeida F.M., Oliveira-Junior M.C., Souza R.A., Petroni R.C., Soto S.F., Soriano F.G., Carvalho P.T., Albertini R., Damaceno-Rodrigues N.R., Lopes F.D., et al. Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. J. Heart Lung Transplant. 2016;35:242–250. doi: 10.1016/j.healun.2015.06.012.
    1. Braegger C.P., Schlattner U., Wallimann T., Utiger A., Frank F., Schaefer B., Heizmann C.W., Sennhauser F.H. Effects of creatine supplementation in cystic fibrosis: Results of a pilot study. J. Cyst. Fibros. 2003;2:177–182. doi: 10.1016/S1569-1993(03)00089-4.
    1. Simpson A.J., Horne S., Sharp P., Sharps R., Kippelen P. Effect of Creatine Supplementation on the Airways of Youth Elite Soccer Players. Med. Sci. Sports Exerc. 2019;51:1582–1590. doi: 10.1249/MSS.0000000000001979.
    1. Miller E.E., Evans A.E., Cohn M. Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc. Natl. Acad. Sci. USA. 1993;90:3304–3308. doi: 10.1073/pnas.90.8.3304.
    1. Wyss M., Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol. Rev. 2000;80:1107–1213. doi: 10.1152/physrev.2000.80.3.1107.
    1. Ostojic S.M. Postviral fatigue syndrome and creatine: A piece of the puzzle? Nutr. Neurosci. 2020 doi: 10.1080/1028415X.2020.1809880.
    1. Malatji B.G., Meyer H., Mason S., Engelke U.F.H., Wevers R.A., van Reenen M., Reinecke C.J. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol. 2017;17:88. doi: 10.1186/s12883-017-0863-9.
    1. Mueller C., Lin J.C., Sheriff S., Maudsley A.A., Younger J.W. Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: Assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav. 2020;14:562–572. doi: 10.1007/s11682-018-0029-4.
    1. van der Schaaf M.E., De Lange F.P., Schmits I.C., Geurts D.E.M., Roelofs K., van der Meer J.W.M., Toni I., Knoop H. Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome. Biol. Psychiatry. 2017;81:358–365. doi: 10.1016/j.biopsych.2016.07.016.
    1. Amital D., Vishne T., Rubinow A., Levine J. Observed effects of creatine monohydrate in a patient with depression and fibromyalgia. Am. J. Psychiatry. 2006;163:1840–1841. doi: 10.1176/ajp.2006.163.10.1840b.
    1. Leader A., Amital D., Rubinow A., Amital H. An open-label study adding creatine monohydrate to ongoing medical regimens in patients with the fibromyalgia syndrome. Ann. N. Y. Acad. Sci. 2009;1173:829–836. doi: 10.1111/j.1749-6632.2009.04811.x.
    1. Ostojic S.M., Stojanovic M., Drid P., Hoffman J.R., Sekulic D., Zenic N. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome. Nutrients. 2016;8:72. doi: 10.3390/nu8020072.
    1. Agren H., Niklasson F. Creatinine and creatine in CSF: Indices of brain energy metabolism in depression. Short note. J. Neural Transm. 1988;74:55–59. doi: 10.1007/BF01243575.
    1. Niklasson F., Agren H. Brain energy metabolism and blood-brain barrier permeability in depressive patients: Analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol. Psychiatry. 1984;19:1183–1206.
    1. Kato T., Takahashi S., Shioiri T., Inubushi T. Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J. Affect. Disord. 1992;26:223–230. doi: 10.1016/0165-0327(92)90099-R.
    1. Kato T., Takahashi S., Shioiri T., Murashita J., Hamakawa H., Inubushi T. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J. Affect. Disord. 1994;31:125–133. doi: 10.1016/0165-0327(94)90116-3.
    1. Silveri M.M., Parow A.M., Villafuerte R.A., Damico K.E., Goren J., Stoll A.L., Cohen B.M., Renshaw P.F. S-adenosyl-L-methionine: Effects on brain bioenergetic status and transverse relaxation time in healthy subjects. Biol. Psychiatry. 2003;54:833–839. doi: 10.1016/S0006-3223(03)00064-7.
    1. Kondo D.G., Forrest L.N., Shi X., Sung Y.H., Hellem T.L., Huber R.S., Renshaw P.F. Creatine target engagement with brain bioenergetics: A dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression. Amino Acids. 2016;48:1941–1954. doi: 10.1007/s00726-016-2194-3.
    1. Yoon S., Kim J.E., Hwang J., Kim T.S., Kang H.J., Namgung E., Ban S., Oh S., Yang J., Renshaw P.F., et al. Effects of Creatine Monohydrate Augmentation on Brain Metabolic and Network Outcome Measures in Women With Major Depressive Disorder. Biol. Psychiatry. 2016;80:439–447. doi: 10.1016/j.biopsych.2015.11.027.
    1. Allen P.J., D’Anci K.E., Kanarek R.B., Renshaw P.F. Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neuropsychopharmacology. 2010;35:534–546. doi: 10.1038/npp.2009.160.
    1. Ahn N.R., Leem Y.H., Kato M., Chang H.K. Effects of creatine monohydrate supplementation and exercise on depression-like behaviors and raphe 5-HT neurons in mice. J. Exerc. Nutrition Biochem. 2016;20:24–31. doi: 10.20463/jenb.2016.09.20.3.4.
    1. Pazini F.L., Cunha M.P., Azevedo D., Rosa J.M., Colla A., de Oliveira J., Ramos-Hryb A.B., Brocardo P.S., Gil-Mohapel J., Rodrigues A.L.S. Creatine Prevents Corticosterone-Induced Reduction in Hippocampal Proliferation and Differentiation: Possible Implication for Its Antidepressant Effect. Mol. Neurobiol. 2017;54:6245–6260. doi: 10.1007/s12035-016-0148-0.
    1. Leem Y.H., Kato M., Chang H. Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3beta/beta-catenin pathway. J. Exerc. Nutrition Biochem. 2018;22:1–6. doi: 10.20463/jenb.2018.0009.
    1. Kious B.M., Kondo D.G., Renshaw P.F. Creatine for the Treatment of Depression. Biomolecules. 2019;9:406. doi: 10.3390/biom9090406.
    1. Bakian A.V., Huber R.S., Scholl L., Renshaw P.F., Kondo D. Dietary creatine intake and depression risk among U.S. adults. Transl. Psychiatry. 2020;10:52. doi: 10.1038/s41398-020-0741-x.
    1. Lyoo I.K., Demopulos C.M., Hirashima F., Ahn K.H., Renshaw P.F. Oral choline decreases brain purine levels in lithium-treated subjects with rapid-cycling bipolar disorder: A double-blind trial using proton and lithium magnetic resonance spectroscopy. Bipolar Disord. 2003;5:300–306. doi: 10.1034/j.1399-5618.2003.00041.x.
    1. Lyoo I.K., Kong S.W., Sung S.M., Hirashima F., Parow A., Hennen J., Cohen B.M., Renshaw P.F. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. 2003;123:87–100. doi: 10.1016/S0925-4927(03)00046-5.
    1. Sbracia M., Sayme N., Grasso J., Vigue L., Huszar G. Sperm function and choice of preparation media: Comparison of Percoll and Accudenz discontinuous density gradients. J. Androl. 1996;17:61–67.
    1. Huszar G., Vigue L., Corrales M. Sperm creatine kinase activity in fertile and infertile oligospermic men. J. Androl. 1990;11:40–46.
    1. Fakih H., MacLusky N., DeCherney A., Wallimann T., Huszar G. Enhancement of human sperm motility and velocity in vitro: Effects of calcium and creatine phosphate. Fertil. Steril. 1986;46:938–944. doi: 10.1016/S0015-0282(16)49839-0.
    1. Oehninger S., Alexander N.J. Male infertility: The focus shifts to sperm manipulation. Curr. Opin. Obstet. Gynecol. 1991;3:182–190. doi: 10.1097/00001703-199104000-00004.
    1. Gergely A., Szollosi J., Falkai G., Resch B., Kovacs L., Huszar G. Sperm creatine kinase activity in normospermic and oligozospermic Hungarian men. J. Assist. Reprod. Genet. 1999;16:35–40. doi: 10.1023/A:1022545612784.
    1. Froman D.P., Feltmann A.J. A new approach to sperm preservation based on bioenergetic theory. J. Anim. Sci. 2010;88:1314–1320. doi: 10.2527/jas.2009-2209.
    1. Lenz H., Schmidt M., Welge V., Schlattner U., Wallimann T., Elsasser H.P., Wittern K.P., Wenck H., Stab F., Blatt T. The creatine kinase system in human skin: Protective effects of creatine against oxidative and UV damage in vitro and in vivo. J. Investig. Dermatol. 2005;124:443–452. doi: 10.1111/j.0022-202X.2004.23522.x.
    1. Peirano R.I., Achterberg V., Dusing H.J., Akhiani M., Koop U., Jaspers S., Kruger A., Schwengler H., Hamann T., Wenck H., et al. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. J. Cosmet. Dermatol. 2011;10:273–281. doi: 10.1111/j.1473-2165.2011.00579.x.

Source: PubMed

3
Sottoscrivi