Human cathelicidin production by the cervix

Lorraine Frew, Sofia Makieva, Andrew T M McKinlay, Brian J McHugh, Ann Doust, Jane E Norman, Donald J Davidson, Sarah J Stock, Lorraine Frew, Sofia Makieva, Andrew T M McKinlay, Brian J McHugh, Ann Doust, Jane E Norman, Donald J Davidson, Sarah J Stock

Abstract

hCAP18/LL-37 is the sole human cathelicidin; a family of host defence peptides with key roles in innate host defence. hCAP18/LL-37 is expressed primarily by neutrophils and epithelial cells, but its production and function in the lower genital tract is largely uncharacterised. Despite the significant roles for cathelicidin in multiple organs and inflammatory processes, its impact on infections that could compromise fertility and pregnancy is unknown. The aim of this study was to investigate cathelicidin production, regulation and function in the cervix. hCAP18/LL-37 was found to be present in cervicovaginal secretions collected from women in the first trimester of pregnancy and to be expressed at significantly higher levels in samples from women with alterations in vaginal bacterial flora characteristic of bacterial vaginosis. In endocervical epithelial cell lines, expression of the gene encoding hCAP18/LL-37 (CAMP) was not affected by TLR agonists, but was found to be up-regulated by both 1, 25 hydroxyvitamin D3 and 25 hydroxyvitamin D3. However, no association was found between serum levels of vitamin D and hCAP18/LL-37 concentrations in cervicovaginal secretions (n = 116). Exposure to synthetic LL-37 had a pro-inflammatory effect on endocervical epithelial cell lines, increasing secretion of inflammatory cytokine IL-8. Together these data demonstrate inducible expression of hCAP18/LL-37 in the female lower reproductive tract in vivo and suggest the capacity for this peptide to modulate host defence to infection in this system. Further investigation will elucidate the effects of hCAP18/LL-37 on the physiology and pathophysiology of labour, and may lead to strategies for the prevention of infection-associated preterm birth.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Cervical hCAP18/LL-37 expression.
Figure 1. Cervical hCAP18/LL-37 expression.
(A) Correlation between cervicovaginal hCAP18/LL-37 and Myeloperoxidase (r = 0.1; n = 77; p = 0.3). (B) Representative western blot of hCAP18/LL-37 expression in cervicovaginal secretions. The 18 kDa hCAP18 and the 5–10 kDa cleaved peptide LL-37 were detected in cervicovaginal secretions.
Figure 2. hCAP18/LL-37 expression in cervicovaginal secretions…
Figure 2. hCAP18/LL-37 expression in cervicovaginal secretions of women with and without Bacterial Vaginosis.
hCAP18/LL-37 concentration in women with normal flora, intermediate vaginal flora and bacterial vaginosis. Data presented as median ± interquartile range. **, p

Figure 3. Effect of TLR agonists on…

Figure 3. Effect of TLR agonists on CAMP and DEFB4 expression in endocervical (END E6/E7)…

Figure 3. Effect of TLR agonists on CAMP and DEFB4 expression in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Cells cultured for 24(250 ng/ml), POLY (I:C) (5 ng/ml), Rec FLA-ST (100 ng/ml) and FSL-1 (100 ng/ml), and untreated controls. (A) END E6/E7 CAMP expression (n = 3), (B) ECT E6/E7 CAMP expression (n = 3), (C) END E6/E7 DEFB4 expression (n = 3), (D) ECT E6/E7 DEFB4 expression (n = 3). Data presented as mean fold change relative to control ± SEM. **, ***, P<0.01, 0.001 respectively compared with control. (One-way ANOVA with Dunnett's post-test).

Figure 4. Effect of vitamin D on…

Figure 4. Effect of vitamin D on CAMP and DEFB4 expression in endocervical (END E6/E7)…

Figure 4. Effect of vitamin D on CAMP and DEFB4 expression in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Cells treated for 24(control), 3 nM, 30 nM or 100 nM of 25(OH) vitamin D3 or 1,25 (OH) vitamin D3. (A) END E6/E7 CAMP expression (n = 3), (B) ECT E6/E7 CAMP expression (n = 3), (C) END E6/E7 DEFB4 expression (n = 3), (D) ECT E6/E7 DEFB4 expression (n = 3). Data presented as mean fold change relative to control ± SEM. ##, ###, p<0.01, 0.001 respectively compared to 25 (OH) vitamin D3 control. *, **, p<0.05, 0.01 compared to 1,25(OH) vitamin D control3. (One-way ANOVA with Dunnett's post-test).

Figure 5. Effect of 25(OH) vitamin D…

Figure 5. Effect of 25(OH) vitamin D 3 on CYP27B1 expression in endocervical (END E6/E7)…

Figure 5. Effect of 25(OH) vitamin D3 on CYP27B1 expression in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Cells treated for 24(control), 3 nM, 30 nM or 100 nM 25(OH) vitamin D3. (A) End E6/E7 cells (n = 3), (B) Ect E6/E7 cells (n = 3). Data presented as mean fold change relative to control ± SEM (error bars). *, **, **, p<0.05, 0.01, 0.001 respectively compared with control (One-way ANOVA with Dunnett's post-test).

Figure 6. Relationship between 25(OH) vitamin D…

Figure 6. Relationship between 25(OH) vitamin D and hCAP18/LL37 in endocervical (END E6/E7) and ectocervical…

Figure 6. Relationship between 25(OH) vitamin D and hCAP18/LL37 in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Correlation between serum 25(OH) vitamin D and CVS hCAP18/LL-37 (r = −0.13; n = 122; p = 0.14). Data presented as scatter plots and divided in to deficient 75 nmol/l. Data analysed by Pearson's Correlation.

Figure 7. Effect of LL-37 receptor antagonists…

Figure 7. Effect of LL-37 receptor antagonists on IL-8 secretion in endocervical (END E6/E7) and…

Figure 7. Effect of LL-37 receptor antagonists on IL-8 secretion in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
END E6/E7 cells were pre-treated for 30 minutes with or without antagonists before being cultured for 24 hours with scrambled LL-37 (25 µg/ml) and LL-37 (25 µg/ml). (A) END E6/E7 treated with PTX (GPCR antagonist, 200 ng/ml), (B) ECT E6/E7 cells treated with PTC, (C) END E6/E7 cells treated with WRW4 (FPR2 antagonist, 10 µM), (D) ECT E6/E7 cells treated with WRW4, (E) END E6/E7 cells treated with KN-62 (P2X7R antagonist, 10 µM), (F) ECT E6/E7 cells treated with KN-62, (G) END E6/E7 cells treated with oATP (P2X7R antagonist, 100 µM) and (H) ECT E6/E7 cells treated with oATP. Data presented as mean concentration ± SEM (error bars). *, **, ***, p<0.05, 0.01, 0.001 respectively. (2way ANOVA with multiple comparison tests).
All figures (7)
Figure 3. Effect of TLR agonists on…
Figure 3. Effect of TLR agonists on CAMP and DEFB4 expression in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Cells cultured for 24(250 ng/ml), POLY (I:C) (5 ng/ml), Rec FLA-ST (100 ng/ml) and FSL-1 (100 ng/ml), and untreated controls. (A) END E6/E7 CAMP expression (n = 3), (B) ECT E6/E7 CAMP expression (n = 3), (C) END E6/E7 DEFB4 expression (n = 3), (D) ECT E6/E7 DEFB4 expression (n = 3). Data presented as mean fold change relative to control ± SEM. **, ***, P<0.01, 0.001 respectively compared with control. (One-way ANOVA with Dunnett's post-test).
Figure 4. Effect of vitamin D on…
Figure 4. Effect of vitamin D on CAMP and DEFB4 expression in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Cells treated for 24(control), 3 nM, 30 nM or 100 nM of 25(OH) vitamin D3 or 1,25 (OH) vitamin D3. (A) END E6/E7 CAMP expression (n = 3), (B) ECT E6/E7 CAMP expression (n = 3), (C) END E6/E7 DEFB4 expression (n = 3), (D) ECT E6/E7 DEFB4 expression (n = 3). Data presented as mean fold change relative to control ± SEM. ##, ###, p<0.01, 0.001 respectively compared to 25 (OH) vitamin D3 control. *, **, p<0.05, 0.01 compared to 1,25(OH) vitamin D control3. (One-way ANOVA with Dunnett's post-test).
Figure 5. Effect of 25(OH) vitamin D…
Figure 5. Effect of 25(OH) vitamin D3 on CYP27B1 expression in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Cells treated for 24(control), 3 nM, 30 nM or 100 nM 25(OH) vitamin D3. (A) End E6/E7 cells (n = 3), (B) Ect E6/E7 cells (n = 3). Data presented as mean fold change relative to control ± SEM (error bars). *, **, **, p<0.05, 0.01, 0.001 respectively compared with control (One-way ANOVA with Dunnett's post-test).
Figure 6. Relationship between 25(OH) vitamin D…
Figure 6. Relationship between 25(OH) vitamin D and hCAP18/LL37 in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
Correlation between serum 25(OH) vitamin D and CVS hCAP18/LL-37 (r = −0.13; n = 122; p = 0.14). Data presented as scatter plots and divided in to deficient 75 nmol/l. Data analysed by Pearson's Correlation.
Figure 7. Effect of LL-37 receptor antagonists…
Figure 7. Effect of LL-37 receptor antagonists on IL-8 secretion in endocervical (END E6/E7) and ectocervical (ECT E6/E7) cell lines.
END E6/E7 cells were pre-treated for 30 minutes with or without antagonists before being cultured for 24 hours with scrambled LL-37 (25 µg/ml) and LL-37 (25 µg/ml). (A) END E6/E7 treated with PTX (GPCR antagonist, 200 ng/ml), (B) ECT E6/E7 cells treated with PTC, (C) END E6/E7 cells treated with WRW4 (FPR2 antagonist, 10 µM), (D) ECT E6/E7 cells treated with WRW4, (E) END E6/E7 cells treated with KN-62 (P2X7R antagonist, 10 µM), (F) ECT E6/E7 cells treated with KN-62, (G) END E6/E7 cells treated with oATP (P2X7R antagonist, 100 µM) and (H) ECT E6/E7 cells treated with oATP. Data presented as mean concentration ± SEM (error bars). *, **, ***, p<0.05, 0.01, 0.001 respectively. (2way ANOVA with multiple comparison tests).

References

    1. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75: 39–48.
    1. Beaumont PE, Li H-N, Davidson DJ (2013) LL-37: an immunomodulatory antimicrobial host defence peptide. Springer Bassel
    1. Nell MJ, Sandra Tjabringa G, Vonk MJ, Hiemstra PS, Grote JJ (2004) Bacterial products increase expression of the human cathelicidin hCAP-18/LL-37 in cultured human sinus epithelial cells. FEMS Immunology & Medical Microbiology 42: 225–231.
    1. Erdag G, Morgan JR (2002) Interleukin-1alpha and interleukin-6 enhance the antibacterial properties of cultured composite keratinocyte grafts. Ann Surg 235: 113–124.
    1. Wang T-T, Nestel FP, Bourdeau V, Nagai Y, Wang Q, et al. (2004) Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. The Journal of Immunology 173: 2909–2912.
    1. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. The FASEB Journal 19: 1067–1077.
    1. Levinson P, Choi RY, Cole AL, Hirbod T, Rhedin S, et al. (2012) HIV-neutralizing activity of cationic polypeptides in cervicovaginal secretions of women in HIV-serodiscordant relationships. PLoS One 7: e31996.
    1. Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, et al. (1999) The Human Cationic Antimicrobial Protein (hCAP18), a Peptide Antibiotic, Is Widely Expressed in Human Squamous Epithelia and Colocalizes with Interleukin-6. Infect Immun 67: 2561–2566.
    1. Levinson P, Kaul R, Kimani J, Ngugi E, Moses S, et al. (2009) Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. Aids 23: 309–317.
    1. Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J (2006) Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunology & Medical Microbiology 48: 75–83.
    1. Stock SJ, Duthie L, Tremaine T, Calder AA, Kelly RW, et al. (2009) Elafin (SKALP/Trappin-2/proteinase inhibitor-3) Is Produced by the Cervix in Pregnancy and Cervicovaginal Levels Are Diminished in Bacterial Vaginosis. Reproductive Sciences 16: 1125–1134.
    1. Mitchell C, Gottsch ML, Liu C, Fredricks DN, Nelson DB (2013) Associations between vaginal bacteria and levels of vaginal defensins in pregnant women. Am J Obstet Gynecol 208: 132.e131–137.
    1. Racicot K, Cardenas I, Wunsche V, Aldo P, Guller S, et al. (2013) Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J Immunol 191: 934–941.
    1. Nugent RP, Krohn MA, Hillier SL (1991) Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 29: 297–301.
    1. Johnson DD, Wagner CL, Hulsey TC, McNeil RB, Ebeling M, et al. (2011) Vitamin D deficiency and insufficiency is common during pregnancy. Am J Perinatol 28: 7–12.
    1. Valore EV, Wiley DJ, Ganz T (2006) Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infection and Immunity 74: 5693–5702.
    1. McAree T, Jacobs B, Manickavasagar T, Sivalokanathan S, Brennan L, et al. (2013) Vitamin D deficiency in pregnancy - still a public health issue. Matern Child Nutr 9: 23–30.
    1. Liu Q, Liu J, Roschmann KIL, van Egmond D, Golebski K, et al. (2013) Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells. J Inflamm-Lond 10: 6.
    1. Ruiz-Gonzalez V, Cancino-Diaz JC, Rodriguez-Martinez S, Cancino-Diaz ME (2009) Keratinocytes treated with peptidoglycan from Staphylococcus aureus produce vascular endothelial growth factor, and its expression is amplified by the subsequent production of interleukin-13. International Journal of Dermatology 48: 846–854.
    1. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770–1773.
    1. Krutzik SR, Hewison M, Liu PT, Robles JA, Stenger S, et al. (2008) IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J Immunol 181: 7115–7120.
    1. Liu PT, Schenk M, Walker VP, Dempsey PW, Kanchanapoomi M, et al. (2009) Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One 4: e5810.
    1. Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, et al. (2010) Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol 184: 965–974.
    1. Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G (2007) Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 6: 403–410.
    1. National Collaborating Centre for Ws and Children's H (2008) National Institute for Health and Clinical Excellence: Guidance. Antenatal Care: Routine care for the healthy pregnant woman. London: RCOG Press National Collaborating Centre for Women's and Children's Health.
    1. Haggarty P, Campbell DM, Knox S, Horgan GW, Hoad G, et al. (2013) Vitamin D in pregnancy at high latitude in Scotland. Br J Nutr 109: 898–905.
    1. Toher C, Lindsay K, McKenna M, Kilbane M, Curran S, et al. (2013) Relationship between vitamin D knowledge and 25-hydroxyvitamin D levels amongst pregnant women. J Hum Nutr Diet.
    1. Dixon BM, Barker T, McKinnon T, Cuomo J, Frei B, et al. (2012) Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res Notes 5: 575.
    1. Bhan I, Camargo CA Jr, Wenger J, Ricciardi C, Ye J, et al. (2011) Circulating levels of 25-hydroxyvitamin D and human cathelicidin in healthy adults. J Allergy Clin Immunol 127: 1302–1304.e1301.
    1. Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, et al. (2009) Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J Transl Med 7: 28.
    1. Gombart AF, Bhan I, Borregaard N, Tamez H, Camargo CA Jr, et al. (2009) Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin Infect Dis 48: 418–424.
    1. Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, et al. (2009) Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 182: 4289–4295.
    1. Mandic Havelka A, Yektaei-Karin E, Hultenby K, Sørensen OE, Lundahl J, et al. (2010) Maternal plasma level of antimicrobial peptide LL37 is a major determinant factor of neonatal plasma LL37 level. Acta Pædiatrica 99: 836–841.
    1. Hertting O, Holm A, Luthje P, Brauner H, Dyrdak R, et al. (2010) Vitamin D induction of the human antimicrobial Peptide cathelicidin in the urinary bladder. PLoS One 5: e15580.
    1. Schaller-Bals S, Schulze A, Bals R (2002) Increased Levels of Antimicrobial Peptides in Tracheal Aspirates of Newborn Infants during Infection. Am J Respir Crit Care Med 165: 992–995.
    1. Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, et al. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192: 1069–1074.
    1. Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 172: 4987–4994.
    1. Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, et al. (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171: 6690–6696.
    1. Wantha S, Alard JE, Megens RT, van der Does AM, Doring Y, et al. (2013) Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ Res 112: 792–801.
    1. Carretero M, Escamez MJ, Garcia M, Duarte B, Holguin A, et al. (2008) In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 128: 223–236.
    1. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, et al. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111: 1665–1672.
    1. Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176: 3044–3052.
    1. Barlow PG, Li Y, Wilkinson TS, Bowdish DM, Lau YE, et al. (2006) The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 80: 509–520.
    1. Coffelt SB, Tomchuck SL, Zwezdaryk KJ, Danka ES, Scandurro AB (2009) Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells. Mol Cancer Res 7: 907–915.
    1. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190: 1217–1226.
    1. Nagaoka I, Tamura H, Hirata M (2006) An Antimicrobial Cathelicidin Peptide, Human CAP18/LL-37, Suppresses Neutrophil Apoptosis via the Activation of Formyl-Peptide Receptor-Like 1 and P2X7. The Journal of Immunology 176: 3044–3052.
    1. Byfield FJ, Wen Q, Leszczynska K, Kulakowska A, Namiot Z, et al. (2011) Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeability. Am J Physiol Cell Physiol 300: C105–112.
    1. Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, et al. (2008) The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 283: 30471–30481.
    1. Montreekachon P, Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, et al. (2011) Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. J Periodontal Res 46: 327–337.
    1. Lau YE, Rozek A, Scott MG, Goosney DL, Davidson DJ, et al. (2005) Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. Infect Immun 73: 583–591.
    1. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, et al. (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172: 1146–1156.
    1. Mookherjee N, Lippert DN, Hamill P, Falsafi R, Nijnik A, et al. (2009) Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol 183: 2688–2696.

Source: PubMed

3
Sottoscrivi