Neural reflexes in inflammation and immunity

Ulf Andersson, Kevin J Tracey, Ulf Andersson, Kevin J Tracey

Abstract

The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit.

Figures

Figure 1.
Figure 1.
Humoral, cellular, and neural regulation of nonresolving inflammation. Nonresolving inflammation mediates the pathogenesis of many major diseases. Understanding mechanisms that reverse or prevent nonresolving inflammation has important implications for the development of therapeutics. Humoral and cellular antiinflammatory mechanisms are perhaps the most widely studied, and are covered in detail in other reviews. As reviewed here, recent advances in neuroscience and immunology have identified neural circuits that modulate the immune system. Understanding these circuits will reveal mechanisms for the localized and rapid control of immunity with significant therapeutic implications.
Figure 2.
Figure 2.
The inflammatory reflex. The prototypical reflex circuit regulating immunity is comprised of afferent and efferent signals transmitted in the vagus nerve in response to the molecular products of infection and injury, including cytokines, eicosanoids, DAMPs, and PAMPs. The activation of adrenergic neurons in the spleen culminates in the release of norepinephrine in the vicinity of T cells that are capable of secreting acetylcholine. Acetylcholine crosses the marginal zone and enters the red pulp, where it interacts with α7 nAChR expressed on cytokine producing macrophages. α7 nAChR signal transduction suppresses the synthesis and release of TNF, IL-1, IL-18, HMGB1, and other cytokines.
Figure 3.
Figure 3.
Gateway reflex. Neural signals arising from soleus muscle contractions travel to the brain stem, and then descend into the sympathetic chain to the lumbar 5 level. This regulates the activity of adrenergic neurons that modulate the expression of CCL20 by endothelial cells, providing a crucial control mechanism that gates the entry of pathogenic T cells into the CNS.
Figure 4.
Figure 4.
Neural influence on B cell trafficking and antibody secretion. (A) Stimulation of vagus nerve signals stimulates the adrenergic splenic nerve. This leads to accumulation of CD11+ B cells in the marginal zone and decreased antibody production. (B) In the setting of diminished signaling from the vagus nerve to splenic nerve, antibody-secreting CD11b+ cells traverse the marginal zone and enter the red pulp, where they release antibodies into the circulation.

References

    1. Aballay A. 2009. Neural regulation of immunity: role of NPR-1 in pathogen avoidance and regulation of innate immunity. Cell Cycle. 8:966–969 10.4161/cc.8.7.8074
    1. Akehi Y., Yoshimatsu H., Kurokawa M., Sakata T., Eto H., Ito S., Ono J. 2001. VLCD-induced weight loss improves heart rate variability in moderately obese Japanese. Exp. Biol. Med. 226:440–445
    1. Andersson U., Tracey K.J. 2012. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30:313–335 10.1146/annurev-immunol-020711-075015
    1. Arima Y., Harada M., Kamimura D., Park J.H., Kawano F., Yull F.E., Kawamoto T., Iwakura Y., Betz U.A., Márquez G., et al. 2012. Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell. 148:447–457 10.1016/j.cell.2012.01.022
    1. Barnaby D., Ferrick K., Kaplan D.T., Shah S., Bijur P., Gallagher E.J. 2002. Heart rate variability in emergency department patients with sepsis. Acad. Emerg. Med. 9:661–670 10.1111/j.1553-2712.2002.tb02143.x
    1. Berbert A.A., Kondo C.R., Almendra C.L., Matsuo T., Dichi I. 2005. Supplementation of fish oil and olive oil in patients with rheumatoid arthritis. Nutrition. 21:131–136 10.1016/j.nut.2004.03.023
    1. Bernik T.R., Friedman S.G., Ochani M., DiRaimo R., Ulloa L., Yang H., Sudan S., Czura C.J., Ivanova S.M., Tracey K.J. 2002. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195:781–788 10.1084/jem.20011714
    1. Berthoud H.R., Powley T.L. 1996. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc. Res. Tech. 35:80–86
    1. Besedovsky H.O., del Rey A. 2000. The cytokine-HPA axis feed-back circuit. Z. Rheumatol. 59:26–30 10.1007/s003930070014
    1. Bianchi M., Bloom O., Raabe T., Cohen P.S., Chesney J., Sherry B., Schmidtmayerova H., Calandra T., Zhang X., Bukrinsky M., et al. 1996. Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone. J. Exp. Med. 183:927–936 10.1084/jem.183.3.927
    1. Biswas A.K., Scott W.A., Sommerauer J.F., Luckett P.M. 2000. Heart rate variability after acute traumatic brain injury in children. Crit. Care Med. 28:3907–3912 10.1097/00003246-200012000-00030
    1. Boettger M.K., Hensellek S., Richter F., Gajda M., Stöckigt R., von Banchet G.S., Bräuer R., Schaible H.G. 2008. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 58:2368–2378 10.1002/art.23608
    1. Borovikova L.V., Ivanova S., Nardi D., Zhang M., Yang H., Ombrellino M., Tracey K.J. 2000a. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton. Neurosci. 85:141–147 10.1016/S1566-0702(00)00233-2
    1. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. 2000b. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405:458–462 10.1038/35013070
    1. Brandon K.W., Rand M.J. 1961. Acetylcholine and the sympathetic innervation of the spleen. J. Physiol. 157:18–32
    1. Braun T.P., Zhu X., Szumowski M., Scott G.D., Grossberg A.J., Levasseur P.R., Graham K., Khan S., Damaraju S., Colmers W.F., et al. 2011. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic–pituitary–adrenal axis. J. Exp. Med. 208:2449–2463 10.1084/jem.20111020
    1. Christensen J.H., Christensen M.S., Dyerberg J., Schmidt E.B. 1999. Heart rate variability and fatty acid content of blood cell membranes: a dose-response study with n-3 fatty acids. Am. J. Clin. Nutr. 70:331–337
    1. Cowan M.J., Kogan H., Burr R., Hendershot S., Buchanan L. 1990. Power spectral analysis of heart rate variability after biofeedback training. J. Electrocardiol. 23:85–94 10.1016/0022-0736(90)90081-C
    1. Dale H.H. 1954. The beginnings and the prospects of neurohumoral transmission. Pharmacol. Rev. 6:7–13
    1. Dale H.H., Dudley H.W. 1929. The presence of histamine and acetylcholine in the spleen of the ox and the horse. J. Physiol. 68:97–123
    1. DeGiorgio L.A., Konstantinov K.N., Lee S.C., Hardin J.A., Volpe B.T., Diamond B. 2001. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7:1189–1193 10.1038/nm1101-1189
    1. Diamond B., Tracey K.J. 2011. Mapping the immunological homunculus. Proc. Natl. Acad. Sci. USA. 108:3461–3462 10.1073/pnas.1100329108
    1. Diamond B., Huerta P.T., Tracey K., Volpe B.T. 2011. It takes guts to grow a brain: Increasing evidence of the important role of the intestinal microflora in neuro- and immune-modulatory functions during development and adulthood. Bioessays. 33:588–591 10.1002/bies.201100042
    1. Earnest C.P., Blair S.N., Church T.S. 2012. Heart rate variability and exercise in aging women. J. Womens Health (Larchmt). 21:334–339 10.1089/jwh.2011.2932
    1. Evrengül H., Dursunoglu D., Cobankara V., Polat B., Seleci D., Kabukçu S., Kaftan A., Semiz E., Kilic M. 2004. Heart rate variability in patients with rheumatoid arthritis. Rheumatol. Int. 24:198–202 10.1007/s00296-003-0357-5
    1. Facchini M., Malfatto G., Sala L., Silvestri G., Fontana P., Lafortuna C., Sartorio A. 2003. Changes of autonomic cardiac profile after a 3-week integrated body weight reduction program in severely obese patients. J. Endocrinol. Invest. 26:138–142
    1. Faust T.W., Chang E.H., Kowal C., Berlin R., Gazaryan I.G., Bertini E., Zhang J., Sanchez-Guerrero J., Fragoso-Loyo H.E., Volpe B.T., et al. 2010. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc. Natl. Acad. Sci. USA. 107:18569–18574 10.1073/pnas.1006980107
    1. Felten S.Y., Olschowka J. 1987. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. J. Neurosci. Res. 18:37–48 10.1002/jnr.490180108
    1. Goehler L.E., Relton J.K., Dripps D., Kiechle R., Tartaglia N., Maier S.F., Watkins L.R. 1997. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res. Bull. 43:357–364 10.1016/S0361-9230(97)00020-8
    1. Goldstein R.S., Bruchfeld A., Yang L., Qureshi A.R., Gallowitsch-Puerta M., Patel N.B., Huston B.J., Chavan S., Rosas-Ballina M., Gregersen P.K., et al. 2007. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med. 13:210–215 10.2119/2006-00108.Goldstein
    1. Haker E., Egekvist H., Bjerring P. 2000. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. J. Auton. Nerv. Syst. 79:52–59 10.1016/S0165-1838(99)00090-9
    1. Heijtz R.D., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., Hibberd M.L., Forssberg H., Pettersson S. 2011. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA. 108:3047–3052 10.1073/pnas.1010529108
    1. Hess A., Axmann R., Rech J., Finzel S., Heindl C., Kreitz S., Sergeeva M., Saake M., Garcia M., Kollias G., et al. 2011. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl. Acad. Sci. USA. 108:3731–3736 10.1073/pnas.1011774108
    1. Holguin F., Téllez-Rojo M.M., Lazo M., Mannino D., Schwartz J., Hernández M., Romieu I. 2005. Cardiac autonomic changes associated with fish oil vs soy oil supplementation in the elderly. Chest. 127:1102–1107 10.1378/chest.127.4.1102
    1. Jae S.Y., Heffernan K.S., Yoon E.S., Lee M.K., Fernhall B., Park W.H. 2009. The inverse association between cardiorespiratory fitness and C-reactive protein is mediated by autonomic function: a possible role of the cholinergic antiinflammatory pathway. Mol. Med. 15:291–296 10.2119/molmed.2009.00057
    1. Kaufman M.P., Hayes S.G. 2002. The exercise pressor reflex. Clin. Auton. Res. 12:429–439 10.1007/s10286-002-0059-1
    1. Kemp A.H., Quintana D.S., Gray M.A., Felmingham K.L., Brown K., Gatt J.M. 2010. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiatry. 67:1067–1074 10.1016/j.biopsych.2009.12.012
    1. Kessler W., Traeger T., Westerholt A., Neher F., Mikulcak M., Müller A., Maier S., Heidecke C.D. 2006. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbecks Arch. Surg. 391:83–87 10.1007/s00423-006-0031-y
    1. Kowal C., DeGiorgio L.A., Nakaoka T., Hetherington H., Huerta P.T., Diamond B., Volpe B.T. 2004. Cognition and immunity; antibody impairs memory. Immunity. 21:179–188 10.1016/j.immuni.2004.07.011
    1. Lanza G.A., Guido V., Galeazzi M.M., Mustilli M., Natali R., Ierardi C., Milici C., Burzotta F., Pasceri V., Tomassini F., et al. 1998. Prognostic role of heart rate variability in patients with a recent acute myocardial infarction. Am. J. Cardiol. 82:1323–1328 10.1016/S0002-9149(98)00635-3
    1. Lanza G.A., Sgueglia G.A., Cianflone D., Rebuzzi A.G., Angeloni G., Sestito A., Infusino F., Crea F., Maseri A.; SPAI (Stratificazione Prognostica dell’Angina Instabile) Investigators 2006. Relation of heart rate variability to serum levels of C-reactive protein in patients with unstable angina pectoris. Am. J. Cardiol. 97:1702–1706 10.1016/j.amjcard.2006.01.029
    1. Lapteva L., Nowak M., Yarboro C.H., Takada K., Roebuck-Spencer T., Weickert T., Bleiberg J., Rosenstein D., Pao M., Patronas N., et al. 2006. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 54:2505–2514 10.1002/art.22031
    1. Laversuch C.J., Seo H., Modarres H., Collins D.A., McKenna W., Bourke B.E. 1997. Reduction in heart rate variability in patients with systemic lupus erythematosus. J. Rheumatol. 24:1540–1544
    1. Leaders F.E., Dayrit C. 1965. The cholinergic component in the sympathetic innervation to the spleen. J. Pharmacol. Exp. Ther. 147:145–152
    1. Lee J.H., Kim K.H., Hong J.W., Lee W.C., Koo S. 2011. Comparison of electroacupuncture frequency-related effects on heart rate variability in healthy volunteers: a randomized clinical trial. J. Acupunct. Meridian. Stud. (Roma). 4:107–115 10.1016/S2005-2901(11)60016-2
    1. Lindgren S., Stewenius J., Sjölund K., Lilja B., Sundkvist G. 1993. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand. J. Gastroenterol. 28:638–642 10.3109/00365529309096103
    1. Luyer M.D., Greve J.W., Hadfoune M., Jacobs J.A., Dejong C.H., Buurman W.A. 2005. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J. Exp. Med. 202:1023–1029 10.1084/jem.20042397
    1. Metz C.N., Tracey K.J. 2005. It takes nerve to dampen inflammation. Nat. Immunol. 6:756–757 10.1038/ni0805-756
    1. Mina-Osorio P., Rosas-Ballina M., Valdes-Ferrer S.I., Al-Abed Y., Tracey K.J., Diamond B. 2012. Neural signaling in the spleen controls B cell responses to blood-borne antigen. Mol. Med. Epub ahead of print
    1. Minami J., Kawano Y., Ishimitsu T., Matsuoka H., Takishita S. 1999. Acute and chronic effects of a hypocaloric diet on 24-hour blood pressure, heart rate and heart-rate variability in mildly-to-moderately obese patients with essential hypertension. Clin. Exp. Hypertens. 21:1413–1427 10.3109/10641969909070857
    1. Mosser D.M., Zhang X. 2008. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 226:205–218 10.1111/j.1600-065X.2008.00706.x
    1. Nathan C. 2002. Points of control in inflammation. Nature. 420:846–852 10.1038/nature01320
    1. Nathan C., Ding A. 2010. Nonresolving inflammation. Cell. 140:871–882 10.1016/j.cell.2010.02.029
    1. Niijima A. 1996. The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat. J. Auton. Nerv. Syst. 61:287–291 10.1016/S0165-1838(96)00098-7
    1. Niijima A., Hori T., Aou S., Oomura Y. 1991. The effects of interleukin-1 beta on the activity of adrenal, splenic and renal sympathetic nerves in the rat. J. Auton. Nerv. Syst. 36:183–192 10.1016/0165-1838(91)90042-2
    1. Niijima A., Hori T., Katafuchi T., Ichijo T. 1995. The effect of interleukin-1 beta on the efferent activity of the vagus nerve to the thymus. J. Auton. Nerv. Syst. 54:137–144 10.1016/0165-1838(95)00003-G
    1. Nolan R.P., Kamath M.V., Floras J.S., Stanley J., Pang C., Picton P., Young Q.R. 2005. Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. Am. Heart J. 149:1137 10.1016/j.ahj.2005.03.015
    1. Olofsson P., Katz D., Rosas-Ballina M., Levine Y., Ochani M., Valdes-Ferrer S., Pavlov V., Tracey K., Chavan S. 2012. alpha7nAChR Expression in bone-marrow derived non T Cells is required for the inflammatory reflex. Mol. Med. Epub ahead of print
    1. Pavlov V.A., Ochani M., Gallowitsch-Puerta M., Ochani K., Huston J.M., Czura C.J., Al-Abed Y., Tracey K.J. 2006. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl. Acad. Sci. USA. 103:5219–5223 10.1073/pnas.0600506103
    1. Pavlov V.A., Parrish W.R., Rosas-Ballina M., Ochani M., Puerta M., Ochani K., Chavan S., Al-Abed Y., Tracey K.J. 2009. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23:41–45 10.1016/j.bbi.2008.06.011
    1. Peng C.K., Henry I.C., Mietus J.E., Hausdorff J.M., Khalsa G., Benson H., Goldberger A.L. 2004. Heart rate dynamics during three forms of meditation. Int. J. Cardiol. 95:19–27 10.1016/j.ijcard.2003.02.006
    1. Peterson C.Y., Krzyzaniak M., Coimbra R., Chang D.C. 2012. Vagus nerve and postinjury inflammatory response. Arch. Surg. 147:76–80 10.1001/archsurg.2011.237
    1. Pontet J., Contreras P., Curbelo A., Medina J., Noveri S., Bentancourt S., Migliaro E.R. 2003. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J. Crit. Care. 18:156–163 10.1016/j.jcrc.2003.08.005
    1. Prass K., Meisel C., Höflich C., Braun J., Halle E., Wolf T., Ruscher K., Victorov I.V., Priller J., Dirnagl U., et al. 2003. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1–like immunostimulation. J. Exp. Med. 198:725–736 10.1084/jem.20021098
    1. Rosas-Ballina M., Goldstein R.S., Gallowitsch-Puerta M., Yang L., Valdés-Ferrer S.I., Patel N.B., Chavan S., Al-Abed Y., Yang H., Tracey K.J. 2009. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol. Med. 15:195–202 10.2119/molmed.2009.00039
    1. Rosas-Ballina M., Olofsson P.S., Ochani M., Valdés-Ferrer S.I., Levine Y.A., Reardon C., Tusche M.W., Pavlov V.A., Andersson U., Chavan S., et al. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 334:98–101 10.1126/science.1209985
    1. Saeed R.W., Varma S., Peng-Nemeroff T., Sherry B., Balakhaneh D., Huston J., Tracey K.J., Al-Abed Y., Metz C.N. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J. Exp. Med. 201:1113–1123 10.1084/jem.20040463
    1. Sakakibara M., Takeuchi S., Hayano J. 1994. Effect of relaxation training on cardiac parasympathetic tone. Psychophysiology. 31:223–228 10.1111/j.1469-8986.1994.tb02210.x
    1. Sandercock G.R., Bromley P.D., Brodie D.A. 2005. Effects of exercise on heart rate variability: inferences from meta-analysis. Med. Sci. Sports Exerc. 37:433–439 10.1249/01.MSS.0000155388.39002.9D
    1. Segond von Banchet G., Boettger M.K., Fischer N., Gajda M., Bräuer R., Schaible H.G. 2009. Experimental arthritis causes tumor necrosis factor-alpha-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain. 145:151–159 10.1016/j.pain.2009.06.002
    1. Sloan R.P., McCreath H., Tracey K.J., Sidney S., Liu K., Seeman T. 2007a. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol. Med. 13:178–184 10.2119/2006-00112.Sloan
    1. Sloan R.P., Shapiro P.A., Demeersman R.E., McKinley P.S., Tracey K.J., Slavov I., Fang Y., Flood P.D. 2007b. Aerobic exercise attenuates inducible TNF production in humans. J. Appl. Physiol. 103:1007–1011 10.1152/japplphysiol.00147.2007
    1. Stein K.S., McFarlane I.C., Goldberg N., Ginzler E.M. 1996. Heart rate variability in patients with systemic lupus erythematosus. Lupus. 5:44–48
    1. Stellwagen D., Malenka R.C. 2006. Synaptic scaling mediated by glial TNF-alpha. Nature. 440:1054–1059 10.1038/nature04671
    1. Sternberg E.M. 2006. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 6:318–328 10.1038/nri1810
    1. Straub R.H., Rauch L., Fassold A., Lowin T., Pongratz G. 2008. Neuronally released sympathetic neurotransmitters stimulate splenic interferon-gamma secretion from T cells in early type II collagen-induced arthritis. Arthritis Rheum. 58:3450–3460 10.1002/art.24030
    1. Su C.F., Kuo T.B., Kuo J.S., Lai H.Y., Chen H.I. 2005. Sympathetic and parasympathetic activities evaluated by heart-rate variability in head injury of various severities. Clin. Neurophysiol. 116:1273–1279 10.1016/j.clinph.2005.01.010
    1. Sun J., Singh V., Kajino-Sakamoto R., Aballay A. 2011. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science. 332:729–732 10.1126/science.1203411
    1. Terathongkum S., Pickler R.H. 2004. Relationships among heart rate variability, hypertension, and relaxation techniques. J. Vasc. Nurs. 22:78–82 10.1016/j.jvn.2004.06.003
    1. Thayer J.F., Fischer J.E. 2009. Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J. Intern. Med. 265:439–447 10.1111/j.1365-2796.2008.02023.x
    1. Tracey K.J. 2002. The inflammatory reflex. Nature. 420:853–859 10.1038/nature01321
    1. Tracey K.J. 2005. Fat meets the cholinergic antiinflammatory pathway. J. Exp. Med. 202:1017–1021 10.1084/jem.20051760
    1. Tracey K.J. 2007. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117:289–296 10.1172/JCI30555
    1. Tracey K.J. 2011. Cell biology. Ancient neurons regulate immunity. Science. 332:673–674 10.1126/science.1206353
    1. Tracey K.J. 2012. Immune cells exploit a neural circuit to enter the CNS. Cell. 148:392–394 10.1016/j.cell.2012.01.025
    1. Tracey K.J., Morgello S., Koplin B., Fahey T.J., III, Fox J., Aledo A., Manogue K.R., Cerami A. 1990. Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute anorexia. J. Clin. Invest. 86:2014–2024 10.1172/JCI114937
    1. Tsunawaki S., Sporn M., Ding A., Nathan C. 1988. Deactivation of macrophages by transforming growth factor-beta. Nature. 334:260–262 10.1038/334260a0
    1. van Maanen M.A., Lebre M.C., van der Poll T., LaRosa G.J., Elbaum D., Vervoordeldonk M.J., Tak P.P. 2009a. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 60:114–122 10.1002/art.24177
    1. van Maanen M.A., Vervoordeldonk M.J., Tak P.P. 2009b. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 5:229–232 10.1038/nrrheum.2009.31
    1. van Maanen M.A., Stoof S.P., Larosa G.J., Vervoordeldonk M.J., Tak P.P. 2010. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann. Rheum. Dis. 69:1717–1723 10.1136/ard.2009.118554
    1. Vida G., Peña G., Deitch E.A., Ulloa L. 2011. α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J. Immunol. 186:4340–4346 10.4049/jimmunol.1003722
    1. Villareal R.P., Liu B.C., Massumi A. 2002. Heart rate variability and cardiovascular mortality. Curr. Atheroscler. Rep. 4:120–127 10.1007/s11883-002-0035-1
    1. Wang H., Yu M., Ochani M., Amella C.A., Tanovic M., Susarla S., Li J.H., Wang H., Yang H., Ulloa L., et al. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 421:384–388 10.1038/nature01339
    1. Wang H., Liao H., Ochani M., Justiniani M., Lin X., Yang L., Al-Abed Y., Wang H., Metz C., Miller E.J., et al. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10:1216–1221 10.1038/nm1124
    1. Wang L., Zhou D., Lee J., Niu H., Faust T.W., Frattini S., Kowal C., Huerta P.T., Volpe B.T., Diamond B. 2012. Female mouse fetal loss mediated by maternal autoantibody. J. Exp. Med. 209:987–1000.
    1. Watkins L.R., Goehler L.E., Relton J.K., Tartaglia N., Silbert L., Martin D., Maier S.F. 1995a. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 183:27–31 10.1016/0304-3940(94)11105-R
    1. Watkins L.R., Maier S.F., Goehler L.E. 1995b. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 57:1011–1026 10.1016/0024-3205(95)02047-M
    1. Watkins L.R., Maier S.F., Ochani M., Amella C.A., Tanovic M., Susarla S., Li J.H., Wang H., Yang H., Ulloa L., et al. 1999. Implications of immune-to-brain communication for sickness and pain. Proc. Natl. Acad. Sci. USA. 96:7710–7713 10.1073/pnas.96.14.7710
    1. Wilund K.R., Rosenblat M., Chung H.R., Volkova N., Kaplan M., Woods J.A., Aviram M. 2009. Macrophages from alpha 7 nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterol accumulation and decreased cellular paraoxonase expression: a possible link between the nervous system and atherosclerosis development. Biochem. Biophys. Res. Commun. 390:148–154 10.1016/j.bbrc.2009.09.088
    1. Wong C.H., Jenne C.N., Lee W.Y., Léger C., Kubes P. 2011. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science. 334:101–105 10.1126/science.1210301
    1. Zulfiqar U., Jurivich D.A., Gao W., Singer D.H. 2010. Relation of high heart rate variability to healthy longevity. Am. J. Cardiol. 105:1181–1185 10.1016/j.amjcard.2009.12.022

Source: PubMed

3
Sottoscrivi