A method to quantify autonomic nervous system function in healthy, able-bodied individuals

Shubham Debnath, Todd J Levy, Mayer Bellehsen, Rebecca M Schwartz, Douglas P Barnaby, Stavros Zanos, Bruce T Volpe, Theodoros P Zanos, Shubham Debnath, Todd J Levy, Mayer Bellehsen, Rebecca M Schwartz, Douglas P Barnaby, Stavros Zanos, Bruce T Volpe, Theodoros P Zanos

Abstract

Background: The autonomic nervous system (ANS) maintains physiological homeostasis in various organ systems via parasympathetic and sympathetic branches. ANS function is altered in common diffuse and focal conditions and heralds the beginning of environmental and disease stresses. Reliable, sensitive, and quantitative biomarkers, first defined in healthy participants, could discriminate among clinically useful changes in ANS function. This framework combines controlled autonomic testing with feature extraction during physiological responses.

Methods: Twenty-one individuals were assessed in two morning and two afternoon sessions over two weeks. Each session included five standard clinical tests probing autonomic function: squat test, cold pressor test, diving reflex test, deep breathing, and Valsalva maneuver. Noninvasive sensors captured continuous electrocardiography, blood pressure, breathing, electrodermal activity, and pupil diameter. Heart rate, heart rate variability, mean arterial pressure, electrodermal activity, and pupil diameter responses to the perturbations were extracted, and averages across participants were computed. A template matching algorithm calculated scaling and stretching features that optimally fit the average to an individual response. These features were grouped based on test and modality to derive sympathetic and parasympathetic indices for this healthy population.

Results: A significant positive correlation (p = 0.000377) was found between sympathetic amplitude response and body mass index. Additionally, longer duration and larger amplitude sympathetic and longer duration parasympathetic responses occurred in afternoon testing sessions; larger amplitude parasympathetic responses occurred in morning sessions.

Conclusions: These results demonstrate the robustness and sensitivity of an algorithmic approach to extract multimodal responses from standard tests. This novel method of quantifying ANS function can be used for early diagnosis, measurement of disease progression, or treatment evaluation.

Trial registration: This study registered with Clinicaltrials.gov , identifier NCT04100486 . Registered September 24, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04100486 .

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Autonomic testing and monitoring physiological signals. (a) Shown is a sample timeline of autonomic tests performed in each session. The tests include a set of sympathetic tests (standing-squatting-standing [one minute of each, in succession] and cold pressor test [immersion of hand in ice water for up to three minutes]), a set of parasympathetic tests (deep breathing [respiratory rate of six breaths per minute for seven minutes] and diving reflex test [refrigerated gel-filled compresses on the face for one minute with one minute of recovery]), and Valsalva maneuver (restricted and forced exhalation for 15 s with one minute of recovery). (b) Physiological signals for each participant were recorded by a six lead electrocardiogram (in red, wires attached to four foam adhesive electrodes placed at each shoulder and each ankle) and a respiratory belt (in green, around the torso). Recorded from the left hand were noninvasive blood pressure (in blue, small inflatable cuff on middle phalanx of middle finger) and electrodermal activity (in gold, dry, metal electrodes on distal phalanx of index and ring finger). Eye tracking glasses (in purple) were placed to record pupil diameter and gaze location
Fig. 2
Fig. 2
Schematic of template matching method. Shown is a schematic of the template matching method to quantify autonomic responses. The average response within an epoch (a) is the template to fit the individual response (b). Once the individual response is trimmed and extrapolated for the same epoch (c), four parameters are estimated to best fit the template to the response (d). Parameters are estimated by minimizing the normalized sum of the squared error (Equation (Akselrod et al., 1981)). The parameters quantify how the individual response compares to the average template in duration scale and amplitude scale, as well as delay and vertical offset. The duration scale is reported as variable H and the amplitude scale and vertical offset are reported as variable V
Fig. 3
Fig. 3
Monitoring and calculating physiological signals. 15 s of raw signals from these sensors are shown in the upper panel, with six channels of the electrocardiogram, one channel of respiration, one channel of finger pressure, one channel of electrodermal activity, and two channels corresponding to the left and right pupil diameter. Calculated signals in the lower panel include heart rate from the electrocardiogram, heart rate variability (RMSSD) from interbeat intervals, and the mean arterial pressure
Fig. 4
Fig. 4
Average heart rate, mean arterial pressure, and RMSSD during autonomic testing (76 sessions). The individual calculated responses (gray lines) were accumulated and averaged (black line) to extract an average response for each modality during each test. Each column represents a different calculated signal (heart rate, mean arterial pressure, and RMSSD). The dotted black traces correspond to a 95% confidence interval. RMSSD was not calculated for the cold pressor test and Valsalva maneuver due to time constraints necessary to accurately convey heart rate variability. Squat Test: vertical lines reflect changes in posture from standing to squatting and then squatting to standing. Cold Pressor Test: the first vertical line reflects when the participant immersed their hand into the ice water. The second vertical line represents the maximum of three minutes. The average trace only represents the individual traces available at that time point, as participants removed their hand at their own discretion. All participants kept their hand in the ice water for at least 30 s. Deep Breathing: vertical lines reflect when the deep breathing rate (6 breaths/minute) began and ended. In the third column for the RMSSD, only the first two minutes were analyzed. Diving Reflex: vertical lines reflect when the refrigerated gel-mask was placed on and removed from the participant’s face. A five second removal period is designated before the one minute of recovery. Valsalva Maneuver: vertical lines reflect the phases of the effort, from baseline, five seconds designated for inhalation and preparation, 15 s of the Valsalva maneuver, 10 s at the end of maneuver, and a final minute of recovery
Fig. 5
Fig. 5
Example of individual responses and corresponding calculated features. Here are examples of individual phasic responses to autonomic testing (blue trace) and the transformed template (red trace) resulting from stretching and scaling the average template (black trace) to best match the individual response. The calculated features (in title of each panel) represent scaling amplitude (V) and duration (H). (a) Heart rate change in the transition from squatting to standing. Participant stood at t = 0 (black vertical line). (b) Mean arterial pressure changes in the transition from squatting to standing. Participant stood at t = 0 (black vertical line). (c) Heart rate change when putting on the refrigerated mask to initiate the diving reflex. The mask is placed at t = 0 (black vertical line). (d) Mean arterial pressure change when putting on the refrigerated mask to initiate the diving reflex. The mask is placed at t = 0 (black vertical line). (e) Heart rate fluctuations during first two minutes of deep breathing task. (f) Heart rate variability RMSSD calculated during the first two minutes of the deep breathing task
Fig. 6
Fig. 6
Calculated features vs BMI. Average calculated features for each participant as a function of their BMI. For each type of features (top row is sympathetic and bottom row is parasympathetic, first column represents H [duration scale] and second column represents V ([amplitude scale and offset]), each point represents the average for a single participant, while error bars show standard deviation. Line of best fit was approximated, with p-values for each subplot
Fig. 7
Fig. 7
Calculated features in AM and PM. The average feature for each type for each individual was calculated for two AM sessions and two PM sessions. (a) Each trace represents one individual, where blue traces represent higher values in AM sessions and orange traces represent higher values in PM sessions. (b) Summary of the number of participants with greater feature values in either AM or PM sessions

References

    1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–222. doi: 10.1126/science.6166045.
    1. Allen MT, Shelley KS, Boquet AJ. A comparison of cardiovascular and autonomic adjustments to three types of cold stimulation tasks. Int J Psychophysiol. 1992;13(1):59–69. doi: 10.1016/0167-8760(92)90021-3.
    1. Badke CM, Marsillio LE, Weese-Mayer DE, Sanchez-Pinto LN. Autonomic nervous system dysfunction in pediatric Sepsis. Front Pediatr. 2018;6:280. doi: 10.3389/fped.2018.00280.
    1. Badran BW, Mithoefer OJ, Summer CE, LaBate NT, Glusman CE, Badran AW, DeVries WH, Summers PM, Austelle CW, McTeague LM, Borckardt JJ, George MS. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11(4):699–708. doi: 10.1016/j.brs.2018.04.004.
    1. Baek HJ, Cho C-H, Cho J, Woo J-M. Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed J E Health. 2015;21(5):404–414. doi: 10.1089/tmj.2014.0104.
    1. Barman SM, Yates BJ. Deciphering the neural control of sympathetic nerve activity: status report and directions for future research. Front Neurosci. 2017;11:730. doi: 10.3389/fnins.2017.00730.
    1. Bauerly KR, Jones RM, Miller C. Effects of social stress on autonomic, behavioral, and acoustic parameters in adults who stutter. Journal of Speech, Language, and Hearing Research. 2019;62(7):2185–2202. doi: 10.1044/2019_JSLHR-S-18-0241.
    1. Beckers F, Ramaekers D, Aubert AE. Approximate entropy of heart rate variability: validation of methods and application in heart failure. Cardiovasc Eng. 2001;1(4):177–182. doi: 10.1023/A:1015212328405.
    1. Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and Meta-analysis. Sports Med. 2016;46(10):1461–1486. doi: 10.1007/s40279-016-0484-2.
    1. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4. 10.3389/fphys.2013.00026.
    1. Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise. Sports Med. 2008;38(8):633–646. doi: 10.2165/00007256-200838080-00002.
    1. Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, et al. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med. 2020;10(3). 10.3390/jpm10030119.
    1. Broadstone VL, Roy T, Self M, Pfeifer MA. Cardiovascular autonomic dysfunction: diagnosis and prognosis. Diabet Med 8 Spec No: S88–93, 1991. 10.1111/j.1464-5491.1991.tb02165.x, S2, S93.
    1. Burger AM, Van der Does W, Brosschot JF, Verkuil B. From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: a report of three studies. Biol Psychol. 2020;152:107863. doi: 10.1016/j.biopsycho.2020.107863.
    1. Carthy ER. Autonomic dysfunction in essential hypertension: a systematic review. Ann Med Surg (Lond) 2013;3(1):2–7. doi: 10.1016/j.amsu.2013.11.002.
    1. Castiglioni P, Parati G, Rienzo MD, Carabalona R, Cividjian A, Quintin L. Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J Physiol. 2011;589:355–369. doi: 10.1113/jphysiol.2010.196428.
    1. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927–942. doi: 10.1016/j.immuni.2017.06.008.
    1. Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23. doi: 10.1016/j.autneu.2016.08.014.
    1. Cracchiolo M, Sacramento JF, Mazzoni A, Panarese A, Carpaneto J, Conde SV, Micera S. Decoding neural metabolic markers from the carotid sinus nerve in a type 2 diabetes model. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2019;27(10):2034–2043. doi: 10.1109/TNSRE.2019.2942398.
    1. De Becker P, Dendale P, De Meirleir K, Campine I, Vandenborne K, Hagers Y. Autonomic testing in patients with chronic fatigue syndrome. Am J Med. 1998;105(3):22S–26S. doi: 10.1016/S0002-9343(98)00168-5.
    1. Debnath S, Barnaby DP, Coppa K, Makhnevich A, Kim EJ, Chatterjee S, Tóth V, Levy TJ, Paradis M, Cohen SL, Hirsch JS, Zanos TP, Becker LB, Cookingham J, Davidson KW, Dominello AJ, Falzon L, McGinn T, Mogavero JN, Osorio GA, the Northwell COVID-19 Research Consortium Machine learning to assist clinical decision-making during the COVID-19 pandemic. Bioelectron Med. 2020;6:14. doi: 10.1186/s42234-020-00050-8.
    1. Debnath S, Levy TJ, Zanos S, Zanos TP. Noninvasive, multimodal assessment of physiological responses to transcutaneous auricular vagus nerve stimulation. 2021 10th International IEEE/EMBS Conference on Neural Engineering. 2021;1109–12. 10.1109/NER49283.2021.9441419.
    1. Devor M, Jänig W, Michaelis M. Modulation of activity in dorsal root ganglion neurons by sympathetic activation in nerve-injured rats. J Neurophysiol. 1994;71(1):38–47. doi: 10.1152/jn.1994.71.1.38.
    1. Diago E, Pérez J, Lasaosa S, Alebesque A, Horta S, Kulisevsky J, López del Val J. Circadian rhythm and autonomic dysfunction in presymptomatic and early Huntington’s disease. Parkinsonism Relat Disord. 2017;44:95–100. doi: 10.1016/j.parkreldis.2017.09.013.
    1. Doytchinova A, Hassel JL, Yuan Y, Lin H, Yin D, Adams D, Straka S, Wright K, Smith K, Wagner D, Shen C, Salanova V, Meshberger C, Chen LS, Kincaid JC, Coffey AC, Wu G, Li Y, Kovacs RJ, Everett TH, Victor R, Cha Y-M, Lin S-F, Chen P-S. Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm. 2017;14(1):25–33. doi: 10.1016/j.hrthm.2016.09.019.
    1. Droguett VSL, Santos A da C, Medeiros CE de, Marques DP, Nascimento LS do, Brasileiro-Santos M do S. Cardiac autonomic modulation in healthy elderly after different intensities of dynamic exercise. Clinical Interventions in Aging 10 Dove Press. 2015:203–8.
    1. Du N, Bai S, Oguri K, Kato Y, Matsumoto I, Kawase H, Matsuoka T. Heart rate recovery after exercise and neural regulation of heart rate variability in 30-40 year old female Marathon runners. J Sports Sci Med. 2005;4(1):9–17.
    1. Ducla-Soares JL, Santos-Bento M, Laranjo S, Andrade A, Ducla-Soares E, Boto JP, Silva-Carvalho L, Rocha I. Wavelet analysis of autonomic outflow of normal subjects on head-up tilt, cold pressor test. Valsalva manoeuvre and deep breathing Experimental Physiology. 2007;92(4):677–686. doi: 10.1113/expphysiol.2007.038026.
    1. Duschek S, Muckenthaler M, Werner N, Reyes del Paso GA. Relationships between features of autonomic cardiovascular control and cognitive performance. Biol Psychol. 2009;81:110–7. 10.1016/j.biopsycho.2009.03.003, 2.
    1. Dütsch M, Burger M, Dörfler C, Schwab S, Hilz MJ. Cardiovascular autonomic function in poststroke patients. Neurology. 2007;69(24):2249–2255. doi: 10.1212/01.wnl.0000286946.06639.a7.
    1. Engel T, Ben-Horin S, Beer-Gabel M. Autonomic dysfunction correlates with clinical and inflammatory activity in patients with Crohn’s disease. Inflamm Bowel Dis. 2015;21:2320–2326. doi: 10.1097/MIB.0000000000000508.
    1. Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240. doi: 10.3389/fpubh.2017.00240.
    1. Femminella GD, Rengo G, Komici K, Iacotucci P, Petraglia L, Pagano G, de Lucia C, Canonico V, Bonaduce D, Leosco D, Ferrara N. Autonomic dysfunction in Alzheimer’s disease: tools for assessment and review of the literature. J Alzheimers Dis. 2014;42(2):369–377. doi: 10.3233/JAD-140513.
    1. Ferreira JA, Bissell BD. Misdirected sympathy: the role of Sympatholysis in Sepsis and septic shock. J Intensive Care Med. 2018;33(2):74–86. doi: 10.1177/0885066616689548.
    1. Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117(4):716–730. doi: 10.1016/j.clinph.2005.09.027.
    1. Gazi AH, Gurel NZ, Richardson KLS, Wittbrodt MT, Shah AJ, Vaccarino V, Bremner JD, Inan OT. Digital cardiovascular biomarker responses to transcutaneous cervical Vagus nerve stimulation: state-space modeling, prediction, and simulation. JMIR mHealth and uHealth. 2020;8(9):e20488. doi: 10.2196/20488.
    1. Gibbons CH, Cheshire WP, Fife TD. Model Coverage Policy: Autonomic Testing [Online]. .
    1. Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol. 2019;73(10):1189–1206. doi: 10.1016/j.jacc.2018.12.064.
    1. Goldstein DS. Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Compr Physiol. 2014;4:805–826. doi: 10.1002/cphy.c130026.
    1. Goldstein DS, Cheshire WP. Beat-to-beat blood pressure and heart rate responses to the Valsalva maneuver. Clin Auton Res. 2017;27(6):361–367. doi: 10.1007/s10286-017-0474-y.
    1. Gonzaga LA, Vanderlei LCM, Gomes RL, Valenti VE. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study. Sci Rep. 2017;7(1):14091. doi: 10.1038/s41598-017-14540-4.
    1. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8. 10.3389/fphys.2017.00665.
    1. Guiraud D, Andreu D, Bonnet S, Carrault G, Couderc P, Hagège A, Henry C, Hernandez A, Karam N, Rolle VL, Mabo P, Maciejasz P, Malbert C-H, Marijon E, Maubert S, Picq C, Rossel O, Bonnet J-L. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation. J Neural Eng. 2016;13(4):041002. doi: 10.1088/1741-2560/13/4/041002.
    1. Gurel NZ, Huang M, Wittbrodt MT, Jung H, Ladd SL, MdMH S, Ko Y-A, Shallenberger L, Nye JA, Pearce B, Vaccarino V, Shah AJ, Bremner JD, Inan OT. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimulation. 2020;13(1):47–59. doi: 10.1016/j.brs.2019.08.002.
    1. Gurel NZ, Wittbrodt MT, Jung H, Shandhi MH, Driggers EG, Ladd SL, Huang M, Ko Y-A, Shallenberger L, Beckwith J, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial. Neurobiology of Stress. 2020;13:100264. doi: 10.1016/j.ynstr.2020.100264.
    1. Heath ME, Downey JA. The cold face test (diving reflex) in clinical autonomic assessment: methodological considerations and repeatability of responses. Clin Sci (Lond) 1990;78(2):139–147. doi: 10.1042/cs0780139.
    1. Hilz MJ, Dütsch M. Quantitative studies of autonomic function. Muscle Nerve. 2006;33(1):6–20. doi: 10.1002/mus.20365.
    1. Hilz MJ, Stemper B, Sauer P, Haertl U, Singer W, Axelrod FB. Cold face test demonstrates parasympathetic cardiac dysfunction in familial dysautonomia. American journal of physiology-regulatory. Integrative and Comparative Physiology. 1999;276(6):R1833–R1839. doi: 10.1152/ajpregu.1999.276.6.R1833.
    1. Huang F, Dong J, Kong J, Wang H, Meng H, Spaeth RB, Camhi S, Liao X, Li X, Zhai X, Li S, Zhu B, Rong P. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement Altern Med. 2014;14(1):203. doi: 10.1186/1472-6882-14-203.
    1. Illigens BMW, Gibbons CH. Sweat testing to evaluate autonomic function. Clin Auton Res. 2008;19(2):79–87. doi: 10.1007/s10286-008-0506-8.
    1. Jung W, Jang K-I, Lee S-H. Heart and brain interaction of psychiatric illness: a review focused on heart rate variability, cognitive function, and Quantitative electroencephalography. Clin Psychopharmacol Neurosci. 2019;17(4):459–474. doi: 10.9758/cpn.2019.17.4.459.
    1. Kang JH, Kim JK, Hong SH, Lee CH, Choi BY. Heart rate variability for quantification of autonomic dysfunction in fibromyalgia. Ann Rehabil Med. 2016;40(2):301–309. doi: 10.5535/arm.2016.40.2.301.
    1. Kario K, Pickering TG, Hoshide S, Eguchi K, Ishikawa J, Morinari M, Hoshide Y, Shimada K. Morning blood pressure surge and hypertensive cerebrovascular disease: role of the alpha adrenergic sympathetic nervous system. Am J Hypertens. 2004;17(8):668–675. doi: 10.1016/j.amjhyper.2004.04.001.
    1. Khalfallah K, Ayoub H, Calvet JH, Neveu X, Brunswick P, Griveau S, Lair V, Cassir M, Bedioui F. Noninvasive galvanic skin sensor for early diagnosis of Sudomotor dysfunction: application to diabetes. IEEE Sensors J. 2012;12(3):456–463. doi: 10.1109/JSEN.2010.2103308.
    1. Kinoshita T, Nagata S, Baba R, Kohmoto T, Iwagaki S. Cold-water face immersion per se elicits cardiac parasympathetic activity. Circ J. 2006;70(6):773–776. doi: 10.1253/circj.70.773.
    1. Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012;59(2):117–122. doi: 10.1016/j.jjcc.2011.12.006.
    1. Kobal J, Melik Z, Cankar K, Bajrovic FF, Meglic B, Peterlin B, Zaletel M. Autonomic dysfunction in presymptomatic and early symptomatic Huntington’s disease. Acta Neurol Scand. 2010;121(6):392–399. doi: 10.1111/j.1600-0404.2009.01251.x.
    1. Kong J, Fang J, Park J, Li S, Rong P. Treating depression with transcutaneous auricular Vagus nerve stimulation: state of the art and future perspectives. Front Psychiatry. 2018;9. 10.3389/fpsyt.2018.00020.
    1. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113(29):8284–8289. doi: 10.1073/pnas.1605635113.
    1. Koopman FA, Tang MW, Vermeij J, de Hair MJ, Choi IY, Vervoordeldonk MJ, Gerlag DM, Karemaker JM, Tak PP. Autonomic dysfunction precedes development of rheumatoid arthritis: a prospective cohort study. EBioMedicine. 2016;6:231–237. doi: 10.1016/j.ebiom.2016.02.029.
    1. Krassioukov A, Biering-Sørensen F, Donovan W, Kennelly M, Kirshblum S, Krogh K, Alexander MS, Vogel L, Wecht J. International standards to document remaining autonomic function after spinal cord injury. J Spinal Cord Med. 2012;35(4):202–211. doi: 10.1179/1079026812Z.00000000053.
    1. Kyriakou K, Resch B, Sagl G, Petutschnig A, Werner C, Niederseer D, et al. Detecting moments of stress from measurements of wearable physiological sensors. Sensors (Basel). 2019;19(17). 10.3390/s19173805.
    1. Libbus I, Nearing BD, Amurthur B, KenKnight BH, Verrier RL. Quantitative evaluation of heartbeat interval time series using Poincaré analysis reveals distinct patterns of heart rate dynamics during cycles of vagus nerve stimulation in patients with heart failure. J Electrocardiol. 2017;50(6):898–903. doi: 10.1016/j.jelectrocard.2017.06.007.
    1. Lötsch J, Ultsch A. Machine learning in pain research. Pain. 2018;159(4):623–630. doi: 10.1097/j.pain.0000000000001118.
    1. Low PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993;68(8):748–752. doi: 10.1016/S0025-6196(12)60631-4.
    1. Low VA, Sandroni P, Fealey RD, Low PA. Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve. 2006;34(1):57–61. doi: 10.1002/mus.20551.
    1. Mainardi LT. On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods. Philosophical transactions of the Royal Society a: mathematical. Phys Eng Sci. 2009;367(1887):255–275. doi: 10.1098/rsta.2008.0188.
    1. Marfella R, Giugliano D, di Maro G, Acampora R, Giunta R, D’Onofrio F. The squatting test: a useful tool to assess both parasympathetic and sympathetic involvement of the cardiovascular autonomic neuropathy in diabetes. Diabetes. 1994;43:607–612. doi: 10.2337/diab.43.4.607.
    1. Marfella R, Gualdiero P, Siniscalchi M, Carusone C. Verza, Marzano S, Esposito K, Giugliano D. morning blood pressure peak, QT intervals, and sympathetic activity in hypertensive patients. Hypertension. 2003;41(2):237–243. doi: 10.1161/01.HYP.0000050651.96345.0E.
    1. Martinez JM, Garakani A, Kaufmann H, Aaronson CJ, Gorman JM. Heart rate and blood pressure changes during autonomic nervous system challenge in panic disorder patients. Psychosom Med. 2010;72(5):442–449. doi: 10.1097/PSY.0b013e3181d972c2.
    1. Masi EB, Levy T, Tsaava T, Bouton CE, Tracey KJ, Chavan SS, Zanos TP. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectronic Medicine. 2019;5(1):9. doi: 10.1186/s42234-019-0025-z.
    1. McGuire KMB, Greenberg MA, Gevirtz R. Autonomic effects of expressive writing in individuals with elevated blood pressure. J Health Psychol. 2005;10(2):197–209. doi: 10.1177/1359105305049767.
    1. Mckinnon AI, Gray NS, Snowden RJ. Enhanced emotional response to both negative and positive images in post-traumatic stress disorder: evidence from pupillometry. Biol Psychol. 2020;154:107922. doi: 10.1016/j.biopsycho.2020.107922.
    1. Merfeld DM. Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations Exp Brain Res. 2011;210:389–405. 10.1007/s00221-011-2557-7, 3-4.
    1. Michael S, Graham KS, Davis GMO. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Front Physiol. 2017;8. 10.3389/fphys.2017.00301.
    1. Middlekauff HR, Sontz EM. Morning sympathetic nerve activity is not increased in humans. Implications for mechanisms underlying the circadian pattern of cardiac risk. Circulation. 1995;91(10):2549–2555. doi: 10.1161/01.cir.91.10.2549.
    1. Molfino A, Fiorentini A, Tubani L, Martuscelli M, Fanelli FR, Laviano A. Body mass index is related to autonomic nervous system activity as measured by heart rate variability. Eur J Clin Nutr. 2009;63(10):1263–1265. doi: 10.1038/ejcn.2009.35.
    1. Mourot L, Bouhaddi M, Regnard J. Effects of the cold pressor test on cardiac autonomic control in normal subjects. Physiol Res. 2009;58(1):83–91. doi: 10.33549/physiolres.931360.
    1. Munoz ML, van Roon A, Riese H, Thio C, Oostenbroek E, Westrik I, de Geus EJC, Gansevoort R, Lefrandt J, Nolte IM, Snieder H. Validity of (ultra-)short recordings for heart rate variability measurements. PLoS One. 2015;10(9):e0138921. doi: 10.1371/journal.pone.0138921.
    1. Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med. 2019;25(1):14–15. doi: 10.1038/s41591-018-0320-3.
    1. Novak P. Quantitative Autonomic Testing. JoVE (Journal of Visualized Experiments). 2011:e2502. 10.3791/2502.
    1. Pagani M, Lucini D. Autonomic dysregulation in essential hypertension: insight from heart rate and arterial pressure variability. Auton Neurosci. 2001;90(1-2):76–82. doi: 10.1016/S1566-0702(01)00270-3.
    1. Pagani M, Lombardi F, Guzzetti S, Sandrone G, Rimoldi O, Malfatto G, Cerutti S, Malliani A. Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects. J Hypertens Suppl. 1984;2:S383–S385.
    1. Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med. 1991;325(14):986–990. doi: 10.1056/NEJM199110033251402.
    1. Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Annu Rev Immunol. 2018;36(1):783–812. doi: 10.1146/annurev-immunol-042617-053158.
    1. Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol. 2003;90(3-4):317–325. doi: 10.1007/s00421-003-0953-9.
    1. Petrofsky JS, McLellan K. Galvanic skin resistance—a marker for endothelial damage in diabetes. Diabetes Technol Ther. 2009;11(7):461–467. doi: 10.1089/dia.2008.0096.
    1. Pittenger GL, Mehrabyan A, Simmons K, Null A, Dublin C, Barlow P, Vinik AI. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord. 2005;3(2):113–121. doi: 10.1089/met.2005.3.113.
    1. Pole N. The psychophysiology of posttraumatic stress disorder: a meta-analysis. Psychol Bull. 2007;133(5):725–746. doi: 10.1037/0033-2909.133.5.725.
    1. Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N, Gnecchi-Ruscone T. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Phys Heart Circ Phys. 2007;293(1):H702–H708. doi: 10.1152/ajpheart.00006.2007.
    1. Radtke T, Poerschke D, Wilhelm M, Trachsel LD, Tschanz H, Matter F, Jauslin D, Saner H, Schmid J-P. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure. Eur J Prev Cardiol. 2016;23(6):593–601. doi: 10.1177/2047487315594506.
    1. Redgrave JN, Moore L, Oyekunle T, Ebrahim M, Falidas K, Snowdon N, Ali A, Majid A. Transcutaneous auricular Vagus nerve stimulation with concurrent upper limb repetitive task practice for Poststroke motor recovery: a pilot study. J Stroke Cerebrovasc Dis. 2018;27(7):1998–2005. doi: 10.1016/j.jstrokecerebrovasdis.2018.02.056.
    1. Rong P, Liu A, Zhang J, Wang Y, He W, Yang A, et al. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci. 2014:CS20130518. 10.1042/CS20130518.
    1. Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, Zhao Y, Wang H, Vangel M, Sun S, Ben H, Park J, Li S, Meng H, Zhu B, Kong J. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord. 2016;195:172–179. doi: 10.1016/j.jad.2016.02.031.
    1. Rossi RC, Vanderlei LCM, Gonçalves ACCR, Vanderlei FM, Bernardo AFB, Yamada KMH, da Silva NT, de Abreu LC. Impact of obesity on autonomic modulation, heart rate and blood pressure in obese young people. Auton Neurosci. 2015;193:138–141. doi: 10.1016/j.autneu.2015.07.424.
    1. Russo MA, Santarelli DM, O’Rourke D. The physiological effects of slow breathing in the healthy human. Breathe (Sheff) 2017;13(4):298–309. doi: 10.1183/20734735.009817.
    1. Salahuddin L, Cho J, Jeong MG, Kim D. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4656–4659. doi: 10.1109/IEMBS.2007.4353378.
    1. Sandroni P, Benarroch EE, Low PA. Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol. 1991;71(4):1563–1567. doi: 10.1152/jappl.1991.71.4.1563.
    1. Scheen AJ, Philips J-C. Squatting test: a dynamic postural manoeuvre to study baroreflex sensitivity. Clin Auton Res. 2012;22(1):35–41. doi: 10.1007/s10286-011-0140-8.
    1. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: risk factors, diagnosis and treatment. World J Diabetes. 2018;9(1):1–24. doi: 10.4239/wjd.v9.i1.1.
    1. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5. 10.3389/fpubh.2017.00258.
    1. Sharon O, Fahoum F, Nir Y. Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations. J Neurosci NJ-RM-1361-20. 2020;41(2):320–330. doi: 10.1523/jneurosci.1361-20.2020.
    1. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004–1021. doi: 10.1161/CIRCRESAHA.113.302549.
    1. Shields RW. Heart rate variability with deep breathing as a clinical test of cardiovagal function. CCJM. 2009;76(4 suppl 2):S37–S40. doi: 10.3949/ccjm.76.s2.08.
    1. Shim HJ, Kwak MY, An Y-H, Kim DH, Kim YJ, Kim HJ. Feasibility and safety of transcutaneous Vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J Audiol Otol. 2015;19(3):159–167. doi: 10.7874/jao.2015.19.3.159.
    1. da Silva A, do Carmo J, Dubinion J, Hall JE. Role of sympathetic nervous system in obesity related hypertension. Curr Hypertens Rep. 2009;11:206. doi: 10.1007/s11906-009-0036-3.
    1. Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic modulation of cardiac arrhythmias: methods to assess treatment and outcomes. JACC: Clinical Electrophysiology. 2020;6(5):467–483. doi: 10.1016/j.jacep.2020.02.014.
    1. Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, Kasper BS, Hammen T, Rzonsa M, Pauli E, Ellrich J, Graf W, Hopfengartner R. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Medline Abbreviated Title: Epilepsia. 2012;53(7):e115–e118. doi: 10.1111/j.1528-1167.2012.03492.x.
    1. Stein PK, Kleiger RE, Rottman JN. Differing effects of age on heart rate variability in men and women. Am J Cardiol. 1997;80(3):302–305. doi: 10.1016/S0002-9149(97)00350-0.
    1. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60(1):108–111. doi: 10.1212/wnl.60.1.108.
    1. Taylor A, McCartney N, Kamath M, Wiley R. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):251–256. doi: 10.1249/01.mss.0000048725.15026.b5.
    1. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122–131. doi: 10.1016/j.ijcard.2009.09.543.
    1. Tornatzky W, Miczek KA. Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav. 1993;53(5):983–993. doi: 10.1016/0031-9384(93)90278-N.
    1. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601. doi: 10.1016/S0735-1097(97)00554-8.
    1. Van de Borne P, Nguyen H, Biston P, Linkowski P, Degaute JP. Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. Am J Phys Heart Circ Phys. 1994;266(2):H548–H554. doi: 10.1152/ajpheart.1994.266.2.H548.
    1. Verrotti A, Prezioso G, Scattoni R, Chiarelli F. Autonomic neuropathy in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5. 10.3389/fendo.2014.00205.
    1. Victor RG, Leimbach WN, Seals DR, Wallin BG, Mark AL. Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension. 1987;9(5):429–436. doi: 10.1161/01.HYP.9.5.429.
    1. Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig. 2013;4(1):4–18. doi: 10.1111/jdi.12042.
    1. Vogel ER, Sandroni P, Low PA. Blood pressure recovery from CME Valsalva maneuver in patients with autonomic failure. Neurology. 2005;65(10):1533–1526. doi: 10.1212/01.wnl.0000184504.13173.ef.
    1. Weimer LH. Autonomic testing: common techniques and clinical applications. Neurologist. 2010;16(4):215–222. doi: 10.1097/NRL.0b013e3181cf86ab.
    1. Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2018;66(1):149–153. doi: 10.1093/cid/cix731.
    1. Wirch JL, Wolfe LA, Weissgerber TL, Davies GAL. Cold pressor test protocol to evaluate cardiac autonomic function. Appl Physiol Nutr Metab. 31:235–43. 10.1139/h05-018.
    1. Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol. 1991;71(3):1136–1142. doi: 10.1152/jappl.1991.71.3.1136.
    1. Yeh C-P, Huang H-C, Chang Y, Chen M-D, Hsu M. The Reliability and Validity of a Modified Squat Test to Predict Cardiopulmonary Fitness in Healthy Older Men. BioMed Research International 2018 Hindawi: e4863454, 2018.
    1. Yoshimura N, White G, Weight FF, de Groat WC. Patch-clamp recordings from subpopulations of autonomic and afferent neurons identified by axonal tracing techniques. J Auton Nerv Syst. 1994;49(1):85–92. doi: 10.1016/0165-1838(94)90024-8.
    1. Young HA, Benton D. Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol. 2018;29(2 and 3):140–151. doi: 10.1097/FBP.0000000000000383.
    1. Zanos TP. Recording and decoding of vagal neural signals related to changes in physiological parameters and biomarkers of disease. Cold Spring Harb Perspect Med. 2019;9(12):a034157. doi: 10.1101/cshperspect.a034157.
    1. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, Ashe JM, Chavan SS, Tracey KJ, Bouton CE. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. PNAS. 2018;115(21):E4843–E4852. doi: 10.1073/pnas.1719083115.
    1. Zhang J. Effect of age and sex on heart rate variability in healthy subjects. J Manip Physiol Ther. 2007;30(5):374–379. doi: 10.1016/j.jmpt.2007.04.001.
    1. Ziegler D, Laux G, Dannehl K, Spüler M, Mühlen H, Mayer P, Gries FA. Assessment of Cardiovascular Autonomic Function: Age-related Normal Ranges and Reproducibility of Spectral Analysis, Vector Analysis, and Standard Tests of Heart Rate Variation and Blood Pressure Responses. Diabet Med. 1992;9:166–175. doi: 10.1111/j.1464-5491.1992.tb01754.x.

Source: PubMed

3
Sottoscrivi