Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients

Brendan A Daisley, Ryan M Chanyi, Kamilah Abdur-Rashid, Kait F Al, Shaeley Gibbons, John A Chmiel, Hannah Wilcox, Gregor Reid, Amanda Anderson, Malcolm Dewar, Shiva M Nair, Joseph Chin, Jeremy P Burton, Brendan A Daisley, Ryan M Chanyi, Kamilah Abdur-Rashid, Kait F Al, Shaeley Gibbons, John A Chmiel, Hannah Wilcox, Gregor Reid, Amanda Anderson, Malcolm Dewar, Shiva M Nair, Joseph Chin, Jeremy P Burton

Abstract

Abiraterone acetate (AA) is an inhibitor of androgen biosynthesis, though this cannot fully explain its efficacy against androgen-independent prostate cancer. Here, we demonstrate that androgen deprivation therapy depletes androgen-utilizing Corynebacterium spp. in prostate cancer patients and that oral AA further enriches for the health-associated commensal, Akkermansia muciniphila. Functional inferencing elucidates a coinciding increase in bacterial biosynthesis of vitamin K2 (an inhibitor of androgen dependent and independent tumor growth). These results are highly reproducible in a host-free gut model, excluding the possibility of immune involvement. Further investigation reveals that AA is metabolized by bacteria in vitro and that breakdown components selectively impact growth. We conclude that A. muciniphila is a key regulator of AA-mediated restructuring of microbial communities, and that this species may affect treatment response in castrate-resistant cohorts. Ongoing initiatives aimed at modulating the colonic microbiota of cancer patients may consider targeted delivery of poorly absorbed selective bacterial growth agents.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1. Rectal swab microbiota from prostate…
Fig. 1. Rectal swab microbiota from prostate cancer patients receiving no treatment CTRL, ADT, or ADT + AA.
a Principal component analysis (PCA) plot of the microbiota from patient samples. Sequence variants were collapsed at genus-level identification, with clr-transformed Aitchison distances used as input values for PCA analysis. The distance between points represent differences in microbiota composition. Strength of association for taxa are depicted by the length of red arrows shown. Ellipses indicate 95% confidence intervals for each group. b, c Percent relative abundance of the two largest influencers of microbiota separation based on treatment. Data represent the median (line in box), IQR (box), and minimum/maximum (whiskers) for CTRL (n = 33), ADT (n = 21), and ADT + AA (n = 14) patient samples. Statistics shown are derived from multivariate analysis performed using MaAsLin2 additive generalized linear models with log10 clr-transformed input values. d, e ALDEx2 strip charts showing differential abundances of taxa between different patient groups. Positive values indicate increased relative abundance, while negative values indicate decreased relative abundance in the specified treatment groups (ADT or ADT + AA) relative to the CTRL samples. Statistical analysis performed with ALDEx2 and MaAsLin2 software. Features are colored red if ALDEx2 effect size differences (>1) and MaAsLin2 p value (<0.05) thresholds are exceeded, and blue if effect size difference (>2) and p value (<0.05) thresholds are exceeded. **P = 0.0030, ***p = 0.0007, ****p < 0.0001, and n.s. = not significant.
Fig. 2. In vitro incubation of patient…
Fig. 2. In vitro incubation of patient fecal samples with abiraterone acetate (AA).
Freshly collected fecal samples from donors not receiving any form of prostate cancer treatment (n = 8) were transferred to BHI media supplemented with 100 μg/mL of abiraterone acetate (AA) or vehicle (EtOH). Samples were incubated anaerobically at 37 °C for 48 h prior to 16S rRNA gene sequencing. a Alpha diversity was measured via Shannon’s H index and b beta diversity was measured via Aitchison distance between samples within the same group. Data represent the median (line in box), IQR (box), and minimum/maximum (whiskers) of n = 4 low Akkermansia and n = 4 high Akkermansia samples. Statistical comparisons shown for separate Wilcoxon’s matched-pairs tests with multiple comparisons corrected using the Benjamini–Hochberg FDR method. c Differences in Akkermansia abundances following incubation with AA compared to vehicle. Data shown represent log10 clr-transformed relative abundances normalized to the vehicle group for each sample. Statistics shown are derived from differential abundance analysis using ALDEx2 software in R. ***P = 0.0005, *p = 0.0358, and n.s. = not significant.
Fig. 3. AA exposure promotes A. muciniphila…
Fig. 3. AA exposure promotes A. muciniphila in a simulated model of the human distal gut microbiota.
a Simplified schematic providing a detailed overview of experimental methodology. Servier Medical Art images were used and modified under the Creative Commons Attribution 3.0 Unported License. b Bar plot representing the microbiota compositions of gut model samples from before, during, and after AA exposure as determined by sequencing of the V4 region of the bacterial 16S rRNA gene. c PCA plot of time-course collected gut model samples matching the days shown. Aitchison distance of genus-level microbiota compositions were used as input values and strength of association for taxa are depicted by the length of arrows shown. d qPCR-based quantification of total bacteria, Enterobacteriaceae, and A. muciniphila in the gut model over time. e Relative amount of AA remaining in bacterial culture supernatants following 24 h incubation in 100 ppm. AA-supplemented media. Data shown represent the mean ± standard deviation (one-way ANOVA with Sidak’s multiple comparisons) for n = 3 biological replicates performed in technical triplicate for each bacterial strain. f Co-occurrence network visually illustrating the significant interactions between taxa in the gut model. g, h Representative growth curves and i carrying capacity (k) of bacteria in 0.25 mM AA and acetate-supplemented media. Data represent mean ± standard deviation (one-way ANOVA with Sidak’s multiple comparisons) of n = 3 biological replicates performed in technical triplicate for each bacterial strain. j, k Temporal overlay graphs showing A. muciniphila and Enterobacteriaceae abundances in the gut model over time alongside predicted menaquinone (vitamin K2) biosynthesis-related pathway abundances. RA = relative abundance. ****P < 0.0001 and n.s. = not significant.
Fig. 4. Abiraterone acetate (AA) exerts a…
Fig. 4. Abiraterone acetate (AA) exerts a reproducible effect on the human gut microbiota in vivo and in vitro.
a Differentially abundant pathways in patients receiving AA compared to those who were not. Multiclass analysis with the LEfSe algorithm was used to discriminate between AA effects overlapping systemic ADT exposure (LDA score >2 and p < 0.05 for all pathways shown). be Relative abundance of predicted pathways that were statistically increased in AA-treated patients. Data represent the median (line in box), IQR (box), and minimum/maximum (whiskers) of CTRL (n = 33), ADT (n = 21), and ADT + AA (n = 14) patient samples. Statistics shown for Kruskal–Wallis tests with multiple comparisons corrected using the Benjamini–Hochberg FDR method. fi Relative abundance of predicted pathways in AA-exposed gut model samples. j Relevant bacterial contribution to each menaquinone biosynthesis pathway. Predicted pathways were inferenced using an exact amplicon sequence variant approach with the PICRUSt2 software and annotated using the MetaCyc metabolic pathway database. n.s. = not significant.

References

    1. Matson V, et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108. doi: 10.1126/science.aao3290.
    1. Routy B, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706.
    1. Gopalakrishnan V, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236.
    1. Plovier H, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017;23:107–113. doi: 10.1038/nm.4236.
    1. Dao MC, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–436. doi: 10.1136/gutjnl-2014-308778.
    1. Acharya M, et al. A phase I, open-label, single-dose, mass balance study of 14C-labeled abiraterone acetate in healthy male subjects. Xenobiotica. 2013;43:379–389. doi: 10.3109/00498254.2012.721022.
    1. Shin J-H, et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 2019;170:192–201. doi: 10.1016/j.resmic.2019.03.003.
    1. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 2016;14:273. doi: 10.1038/nrmicro.2016.17.
    1. Sfanos KS, et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018;21:539–548. doi: 10.1038/s41391-018-0061-x.
    1. Decréau RA, Marson CM, Smith KE, Behan JM. Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria. J. Steroid Biochem. Mol. Biol. 2003;87:327–336. doi: 10.1016/j.jsbmb.2003.09.005.
    1. Nixon A, Mallet AI, Jackman PJH, Gower DB. Testosterone metabolism by isolated human axillary Corynebacterium spp.: a gaschromatographic mass-spectrometric study. J. Steroid Biochem. 1986;24:887–892. doi: 10.1016/0022-4731(86)90450-4.
    1. Türk S, Mazzoli S, Štšepetova J, Kuznetsova J, Mändar R. Coryneform bacteria in human semen: inter-assay variability in species composition detection and biofilm production ability. Microb. Ecol. Health Dis. 2014;25:22701.
    1. Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat. Rev. Microbiol. 2008;6:111–120. doi: 10.1038/nrmicro1836.
    1. Dangi B, Oh T-J. Bacterial CYP154C8 catalyzes carbon-carbon bond cleavage in steroids. FEBS Lett. 2019;593:67–79. doi: 10.1002/1873-3468.13297.
    1. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol. 2002;68:5186–5190. doi: 10.1128/AEM.68.10.5186-5190.2002.
    1. Belzer C, et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio. 2017;8:e00770–17. doi: 10.1128/mBio.00770-17.
    1. Lopez-Siles M, et al. Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front. Cell. Infect. Microbiol. 2018;8:e201800281. doi: 10.3389/fcimb.2018.00281.
    1. Berg, J. M., Tymoczko, J. L. & Stryer, L. The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate (W.H. Freeman, 2002).
    1. Smith JA, Nevin KP, Lovley DR. Syntrophic growth via quinone-mediated interspecies electron transfer. Front. Microbiol. 2015;6:121.
    1. Fenn K, et al. Quinones are growth factors for the human gut microbiota. Microbiome. 2017;5:161. doi: 10.1186/s40168-017-0380-5.
    1. Quinn L, et al. Helicobacter pylori antibiotic eradication coupled with a chemically defined diet in INS-GAS mice triggers dysbiosis and vitamin K deficiency resulting in gastric hemorrhage. Gut Microbes. 2020;11:820–841. doi: 10.1080/19490976.2019.1710092.
    1. Das P, Babaei P, Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics. 2019;20:208. doi: 10.1186/s12864-019-5591-7.
    1. Derrien M, Vaughan EE, Plugge CM, Vos WMde. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004;54:1469–1476. doi: 10.1099/ijs.0.02873-0.
    1. van der Beek CM, et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 2016;130:2073–2082. doi: 10.1042/CS20160263.
    1. Belzer C, de Vos WM. Microbes inside—from diversity to function: the case of Akkermansia. ISME J. 2012;6:1449–1458. doi: 10.1038/ismej.2012.6.
    1. Alard J, et al. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ. Microbiol. 2016;18:1484–1497. doi: 10.1111/1462-2920.13181.
    1. El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, Props R, Van de Wiele T. Propionate-producing consortium restores antibiotic-induced dysbiosis in a dynamic in vitro model of the human intestinal microbial ecosystem. Front. Microbiol. 2019;10:1206. doi: 10.3389/fmicb.2019.01206.
    1. Flynn JM, Phan C, Hunter RC. Genome-wide survey of Pseudomonas aeruginosa PA14 reveals a role for the glyoxylate pathway and extracellular proteases in the utilization of mucin. Infect. Immun. 2017;85:e00182–17. doi: 10.1128/IAI.00182-17.
    1. Ouwerkerk JP, et al. Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl. Environ. Microbiol. 2016;82:6983–6993. doi: 10.1128/AEM.01641-16.
    1. Espey MG. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic. Biol. Med. 2013;55:130–140. doi: 10.1016/j.freeradbiomed.2012.10.554.
    1. Ravcheev DA, Thiele I. Genomic analysis of the human gut microbiome suggests novel enzymes involved in quinone biosynthesis. Front. Microbiol. 2016;7:128. doi: 10.3389/fmicb.2016.00128.
    1. Pacheco AR, et al. Fucose sensing regulates bacterial intestinal colonization. Nature. 2012;492:113–117. doi: 10.1038/nature11623.
    1. Ottman N, et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 2017;83:e01014–e01017. doi: 10.1128/AEM.01014-17.
    1. Fusaro M, Gallieni M, Porta C, Nickolas TL, Khairallah P. Vitamin K effects in human health: new insights beyond bone and cardiovascular health. J. Nephrol. 2020;33:239–249. doi: 10.1007/s40620-019-00685-0.
    1. Dasari S, Samy ALPA, Kajdacsy-Balla A, Bosland MC, Munirathinam G. Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling. Food Chem. Toxicol. 2018;115:218–227. doi: 10.1016/j.fct.2018.02.018.
    1. Samykutty A, et al. Vitamin K2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. Evid. Based Complement. Altern. Med. 2013;2013:287358. doi: 10.1155/2013/287358.
    1. Nimptsch K, Rohrmann S, Linseisen J. Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg) Am. J. Clin. Nutr. 2008;87:985–992. doi: 10.1093/ajcn/87.4.985.
    1. Smolski M, Turo R, Whiteside S, Bromage S, Collins GN. Prevalence of prostatic calcification subtypes and association with prostate cancer. Urology. 2015;85:178–181. doi: 10.1016/j.urology.2014.09.026.
    1. Souza MC, et al. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains. Antonie Van Leeuwenhoek. 2015;107:1387–1399. doi: 10.1007/s10482-015-0433-3.
    1. Shrestha E, et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 2018;199:161–171. doi: 10.1016/j.juro.2017.08.001.
    1. Cavarretta I, et al. The microbiome of the prostate tumor microenvironment. Eur. Urol. 2017;72:625–631. doi: 10.1016/j.eururo.2017.03.029.
    1. Burkovski A. Cell envelope of Corynebacteria: structure and influence on pathogenicity. ISRN Microbiol. 2013;2013:935736. doi: 10.1155/2013/935736.
    1. Ridaura VK, et al. Contextual control of skin immunity and inflammation by Corynebacterium. J. Exp. Med. 2018;215:785–799. doi: 10.1084/jem.20171079.
    1. Langowski JL, et al. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–465. doi: 10.1038/nature04808.
    1. Attard G, et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 2008;26:4563–4571. doi: 10.1200/JCO.2007.15.9749.
    1. Al KF, Bisanz JE, Gloor GB, Reid G, Burton JP. Evaluation of sampling and storage procedures on preserving the community structure of stool microbiota: a simple at-home toilet-paper collection method. J. Microbiol. Methods. 2018;144:117–121. doi: 10.1016/j.mimet.2017.11.014.
    1. McDonald JAK, et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J. Microbiol. Methods. 2013;95:167–174. doi: 10.1016/j.mimet.2013.08.008.
    1. Caporaso JG, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8.
    1. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–2643. doi: 10.1038/ismej.2017.119.
    1. Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9.
    1. Fernandes AD, et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15. doi: 10.1186/2049-2618-2-15.
    1. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 2017;8:1–6. doi: 10.3389/fmicb.2017.02224.
    1. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle P value generates irreproducible results. Nat. Methods. 2015;12:179–185. doi: 10.1038/nmeth.3288.
    1. Faust K, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 2012;8:e1002606. doi: 10.1371/journal.pcbi.1002606.
    1. Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–1055. doi: 10.1093/bioinformatics/btx701.
    1. Ye Y, Doak TG. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 2009;5:e1000465. doi: 10.1371/journal.pcbi.1000465.
    1. Simhi E, van der Mei HC, Ron EZ, Rosenberg E, Busscher HJ. Effect of the adhesive antibiotic TA on adhesion and initial growth of E. coli on silicone rubber. FEMS Microbiol. Lett. 2000;192:97–100. doi: 10.1111/j.1574-6968.2000.tb09365.x.
    1. Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 2001;69:4572–4579. doi: 10.1128/IAI.69.7.4572-4579.2001.
    1. Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinforma. 2016;17:172. doi: 10.1186/s12859-016-1016-7.
    1. Snyder, J. W., Atlas, R. M. & Atlas, R. M. Handbook of Media for Clinical Microbiology (CRC Press, 2006).
    1. Treitz C, Enjalbert B, Portais J-C, Letisse F, Tholey A. Differential quantitative proteome analysis of Escherichia coli grown on acetate versus glucose. Proteomics. 2016;16:2742–2746. doi: 10.1002/pmic.201600303.

Source: PubMed

3
Sottoscrivi