The early identification of disease progression in patients with suspected infection presenting to the emergency department: a multi-centre derivation and validation study

Kordo Saeed, Darius Cameron Wilson, Frank Bloos, Philipp Schuetz, Yuri van der Does, Olle Melander, Pierre Hausfater, Jacopo M Legramante, Yann-Erick Claessens, Deveendra Amin, Mari Rosenqvist, Graham White, Beat Mueller, Maarten Limper, Carlota Clemente Callejo, Antonella Brandi, Marc-Alexis Macchi, Nicholas Cortes, Alexander Kutz, Peter Patka, María Cecilia Yañez, Sergio Bernardini, Nathalie Beau, Matthew Dryden, Eric C M van Gorp, Marilena Minieri, Louisa Chan, Pleunie P M Rood, Juan Gonzalez Del Castillo, Kordo Saeed, Darius Cameron Wilson, Frank Bloos, Philipp Schuetz, Yuri van der Does, Olle Melander, Pierre Hausfater, Jacopo M Legramante, Yann-Erick Claessens, Deveendra Amin, Mari Rosenqvist, Graham White, Beat Mueller, Maarten Limper, Carlota Clemente Callejo, Antonella Brandi, Marc-Alexis Macchi, Nicholas Cortes, Alexander Kutz, Peter Patka, María Cecilia Yañez, Sergio Bernardini, Nathalie Beau, Matthew Dryden, Eric C M van Gorp, Marilena Minieri, Louisa Chan, Pleunie P M Rood, Juan Gonzalez Del Castillo

Abstract

Background: There is a lack of validated tools to assess potential disease progression and hospitalisation decisions in patients presenting to the emergency department (ED) with a suspected infection. This study aimed to identify suitable blood biomarkers (MR-proADM, PCT, lactate and CRP) or clinical scores (SIRS, SOFA, qSOFA, NEWS and CRB-65) to fulfil this unmet clinical need.

Methods: An observational derivation patient cohort validated by an independent secondary analysis across nine EDs. Logistic and Cox regression, area under the receiver operating characteristic (AUROC) and Kaplan-Meier curves were used to assess performance. Disease progression was identified using a composite endpoint of 28-day mortality, ICU admission and hospitalisation > 10 days.

Results: One thousand one hundred seventy-five derivation and 896 validation patients were analysed with respective 28-day mortality rates of 7.1% and 5.0%, and hospitalisation rates of 77.9% and 76.2%. MR-proADM showed greatest accuracy in predicting 28-day mortality and hospitalisation requirement across both cohorts. Patient subgroups with high MR-proADM concentrations (≥ 1.54 nmol/L) and low biomarker (PCT < 0.25 ng/mL, lactate < 2.0 mmol/L or CRP < 67 mg/L) or clinical score (SOFA < 2 points, qSOFA < 2 points, NEWS < 4 points or CRB-65 < 2 points) values were characterised by a significantly longer length of hospitalisation (p < 0.001), rate of ICU admission (p < 0.001), elevated mortality risk (e.g. SOFA, qSOFA and NEWS HR [95%CI], 45.5 [10.0-207.6], 23.4 [11.1-49.3] and 32.6 [9.4-113.6], respectively) and a greater number of disease progression events (p < 0.001), compared to similar subgroups with low MR-proADM concentrations (< 1.54 nmol/L). Increased out-patient treatment across both cohorts could be facilitated using a derivation-derived MR-proADM cut-off of < 0.87 nmol/L (15.0% and 16.6%), with decreased readmission rates and no mortalities.

Conclusions: In patients presenting to the ED with a suspected infection, the blood biomarker MR-proADM could most accurately identify the likelihood of further disease progression. Incorporation into an early sepsis management protocol may therefore aid rapid decision-making in order to either initiate, escalate or intensify early treatment strategies, or identify patients suitable for safe out-patient treatment.

Keywords: Disease progression; Emergency department; MR-proADM; SOFA; Sepsis; qSOFA.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was approved by the ethics board of each hospital where necessary, and written informed consent was obtained from all patients or their legal representatives where appropriate.

Consent for publication

No individual participant data is reported that would require consent to publish from the participant (or legal parent or guardian for children).

Competing interests

All authors have provided information on potential conflicts of interests directly or indirectly related to the work submitted in the journal’s disclosure forms. KS received research grant paid to the insitituion from Thermofisher, as well as educational grants and support to attend meetings. PS and BM received research support paid to the Institution from bioMerieux and Thermofisher. AK received support from BRAHMS to attend meetings and fulfilled speaking engagements. PH received Lecture honorarium (ThermoFisher Scientific, Beckman Coulter), Educational support honorarium (bioMérieux) Clinical research grants (ThermoFisher Scientific, bioMérieux). DCW is an employee of BRAHMS GmbH, which holds patent rights on the procalcitonin and mid-regional proadrenomedullin assay. All other authors reported no conflicts of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart describing the enrolment of patients. CNS central nervous system, MR-proADM mid-regional proadrenomedullin, N number, SOFA Sequential Organ Failure Assessment
Fig. 2
Fig. 2
ROC curve and AUC analysis for 28-day mortality prediction within the derivation (a) and validation (b) cohorts following presentation to the emergency department. AUC area under the curve, CRB-65 severity score for community-acquired pneumonia, CRP C-reactive protein, LR- negative likelihood ratio, LR+ positive likelihood ratio, MR-proADM mid-regional proadrenomedullin, NEWS National Early Warning Score, OR diagnostic odds ratio, NPV negative predictive value, PCT procalcitonin, PPV positive predictive value, qSOFA quick Sequential Organ Failure Assessment, ROC receiver operating characteristic, SIRS systemic inflammatory response syndrome, SOFA Sequential Organ Failure Assessment
Fig. 3
Fig. 3
Kaplan-Meier analysis to identify disease severity subgroups using biomarkers and clinical scores within the derivation patient population according to MR-proADM (a), lactate (b), SOFA (c), qSOFA (d), NEWS (e) and CRB-65 (f) cut-offs. CRB-65 severity score for community-acquired pneumonia, MR-proADM mid-regional proadrenomedullin, NEWS National Early Warning Score, qSOFA quick Sequential Organ Failure Assessment, SOFA Sequential Organ Failure Assessment
Fig. 4
Fig. 4
Kaplan-Meier analysis to identify patient populations enriched for either uncomplicated infections or further disease progression within the derivation cohort. Patients were stratified according to a combination of MR-proADM and lactate (a), PCT (b), SOFA (c), qSOFA (d), NEWS (e) and CRB-65 (f) cut-offs. CRB-65 severity score for community-acquired pneumonia, MR-proADM mid-regional proadrenomedullin, NEWS National Early Warning Score, PCT procalcitonin, qSOFA quick Sequential Organ Failure Assessment, SOFA Sequential Organ Failure Assessment
Fig. 5
Fig. 5
ROC curve and AUC analysis for hospitalisation decisions within the derivation (a) and validation (b) cohorts following presentation to the Emergency Department. AUC area under the curve, CRB-65 severity score for community-acquired pneumonia, CRP C-reactive protein, LR- negative likelihood ratio, LR+ positive likelihood ratio, MR-proADM mid-regional proadrenomedullin, NEWS National Early Warning Score, NPV negative predictive value, OR diagnostic odds ratio, PCT procalcitonin, PPV positive predictive value, ROC receiver operating characteristic, qSOFA quick Sequential Organ Failure Assessment, SOFA Sequential Organ Failure Assessment

References

    1. Simpson SQ. SIRS in the time of Sepsis-3. Chest. 2018;153(1):34-8.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for Sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):762–774. doi: 10.1001/jama.2016.0288.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003. 2001;31(4):1250–1256.
    1. Simpson SQ. New sepsis criteria: a change we should not make. Chest. 2016;149(5):1117–1118. doi: 10.1016/j.chest.2016.02.653.
    1. Churpek MM, Snyder A, Han X, Sokol S, Pettit N, Howell MD, et al. Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am J Respir Crit Care Med. 2017;195(7):906–11.
    1. Williams JM, Greenslade JH, McKenzie JV, Chu K, Brown AF, Lipman J. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Chest. 2017;151(3):586–596. doi: 10.1016/j.chest.2016.10.057.
    1. Simpson SQ. Diagnosing sepsis: a step forward, and possibly a step back. Ann Transl Med. 2017;5(3):55. doi: 10.21037/atm.2017.01.06.
    1. Yebenes JC. Early detection of sepsis: to adapt or to die. Med Clin (Barc) 2017;149(5):209–210. doi: 10.1016/j.medcli.2017.04.002.
    1. Bermejo-Martin JF, Martin-Fernandez M, Almansa R. Pre-sepsis: a necessary concept to complete the SEPSIS-3 picture? J Crit Care. 2018;44:148. doi: 10.1016/j.jcrc.2017.10.041.
    1. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9.
    1. Leisman DE, Goldman C, Doerfler ME, Masick KD, Dries S, Hamilton E, et al. Patterns and outcomes associated with timeliness of initial crystalloid resuscitation in a prospective sepsis and septic shock cohort. Crit Care Med. 2017;45(10):1596–1606. doi: 10.1097/CCM.0000000000002574.
    1. Bloos F, Ruddel H, Thomas-Ruddel D, Schwarzkopf D, Pausch C, Harbarth S, et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med. 2017;43(11):1602–1612. doi: 10.1007/s00134-017-4782-4.
    1. Yentis SM, Soni N, Sheldon J. C-reactive protein as an indicator of resolution of sepsis in the intensive care unit. Intensive Care Med. 1995;21(7):602–605. doi: 10.1007/BF01700168.
    1. Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. 1993;341(8844):515–518. doi: 10.1016/0140-6736(93)90277-N.
    1. de Kruif MD, Lemaire LC, Giebelen IA, Struck J, Morgenthaler NG, Papassotiriou J, et al. The influence of corticosteroids on the release of novel biomarkers in human endotoxemia. Intensive Care Med. 2008;34(3):518–522. doi: 10.1007/s00134-007-0955-x.
    1. Decker SO, Sigl A, Grumaz C, Stevens P, Vainshtein Y, Zimmermann S, et al. Immune-response patterns and next generation sequencing diagnostics for the detection of mycoses in patients with septic shock-results of a combined clinical and experimental investigation. Int J Mol Sci. 2017;18(8):1796.
    1. Gille J, Ostermann H, Dragu A, Sablotzki A. MR-proADM: a new biomarker for early diagnosis of sepsis in burned patients. J Burn Care Res. 2017;38(5):290–298. doi: 10.1097/BCR.0000000000000508.
    1. Elke G, Bloos F, Wilson DC, Brunkhorst FM, Briegel J, Reinhart K, et al. The use of mid-regional proadrenomedullin to identify disease severity and treatment response to sepsis - a secondary analysis of a large randomised controlled trial. Crit Care. 2018;22(1):79. doi: 10.1186/s13054-018-2001-5.
    1. Elke G, Bloos F, Wilson DC, Meybohm P. Identification of developing multiple organ failure in sepsis patients with low or moderate SOFA scores. Critical Care [JArticle] 2018;22(1):147.
    1. van der Does Y, Limper M, Jie KE, Schuit SCE, Jansen H, Pernot N, et al. Procalcitonin-guided antibiotic therapy in patients with fever in a general emergency department population: a multicenter noninferiority randomized clinical trial (HiTEMP study). Clin Microbiol Infect. 2018;24(12):1281-9.
    1. Schuetz P, Hausfater P, Amin D, Amin A, Haubitz S, Faessler L, et al. Biomarkers from distinct biological pathways improve early risk stratification in medical emergency patients: the multinational, prospective, observational TRIAGE study. Crit Care. 2015;19:377. doi: 10.1186/s13054-015-1098-z.
    1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin Chem. 2015;61(12):1446–1452. doi: 10.1373/clinchem.2015.246280.
    1. Stalenhoef JE, van Nieuwkoop C, Wilson DC, van der Starre WE, Delfos NM, Leyten EMS, et al. Biomarker guided triage can reduce hospitalization rate in community acquired febrile urinary tract infection. J Infect. 2018;77(1):18–24. doi: 10.1016/j.jinf.2018.05.007.
    1. Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol. 2011;11:41. doi: 10.1186/1471-2288-11-41.
    1. Letter FTJ. Nomogram for Bayes theorem. N Engl J Med. 1975;293(5):257.
    1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(21):2063.
    1. Temmesfeld-Wollbruck B, Hocke AC, Suttorp N, Hippenstiel S. Adrenomedullin and endothelial barrier function. Thromb Haemost. 2007;98(5):944–951. doi: 10.1160/TH07-02-0128.
    1. Pittard AJ, Hawkins WJ, Webster NR. The role of the microcirculation in the multi-organ dysfunction syndrome. Clin Intensive Care. 1994;5(4):186–190.
    1. Xie Z, Chen WS, Yin Y, Chan EC, Terai K, Long LM, et al. Adrenomedullin surges are linked to acute episodes of the systemic capillary leak syndrome (Clarkson disease) J Leukoc Biol. 2018;103(4):749–759. doi: 10.1002/JLB.5A0817-324R.
    1. Vigue B, Leblanc PE, Moati F, Pussard E, Foufa H, Rodrigues A, et al. Mid-regional pro-adrenomedullin (MR-proADM), a marker of positive fluid balance in critically ill patients: results of the ENVOL study. Crit Care. 2016;20(1):363. doi: 10.1186/s13054-016-1540-x.
    1. Nierhaus A, Bloos F, Wilson DC, Elke G, Meybohm P, SepNet Critical Care Trials G. Predicting the requirement for renal replacement therapy in intensive care patients with sepsis. Crit Care 2018;22(1):201.
    1. Courtais C, Kuster N, Dupuy AM, Folschveiller M, Jreige R, Bargnoux AS, et al. Proadrenomedullin, a useful tool for risk stratification in high Pneumonia Severity Index score community acquired pneumonia. Am J Emerg Med. 2013;31(1):215–221. doi: 10.1016/j.ajem.2012.07.017.
    1. Huang DT, Angus DC, Kellum JA, Pugh NA, Weissfeld LA, Struck J, et al. Midregional proadrenomedullin as a prognostic tool in community-acquired pneumonia. Chest. 2009;136(3):823–831. doi: 10.1378/chest.08-1981.
    1. Espana PP, Capelastegui A, Mar C, Bilbao A, Quintana JM, Diez R, et al. Performance of pro-adrenomedullin for identifying adverse outcomes in community-acquired pneumonia. J Inf Secur. 2015;70(5):457–466.
    1. Julian-Jimenez A, Yanez MC, Gonzalez-Del Castillo J, Salido-Mota M, Mora-Ordonez B, Arranz-Nieto MJ, et al. Prognostic power of biomarkers for short-term mortality in the elderly patients seen in emergency departments due to infections. Enferm Infecc Microbiol Clin. 2019;37(1):11-8.
    1. Cavallazzi R, El-Kersh K, Abu-Atherah E, Singh S, Loke YK, Wiemken T, et al. Midregional proadrenomedullin for prognosis in community-acquired pneumonia: a systematic review. Respir Med. 2014;108(11):1569–1580. doi: 10.1016/j.rmed.2014.09.018.
    1. Renaud B, Schuetz P, Claessens YE, Labarere J, Albrich W, Mueller B. Proadrenomedullin improves risk of early admission to ICU score for predicting early severe community-acquired pneumonia. Chest. 2012;142(6):1447–1454. doi: 10.1378/chest.11-2574.
    1. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascon GA, et al. The endothelium in Sepsis. Shock. 2016;45(3):259–270. doi: 10.1097/SHK.0000000000000473.
    1. Andaluz-Ojeda D, Nguyen HB, Meunier-Beillard N, Cicuendez R, Quenot JP, Calvo D, et al. Superior accuracy of mid-regional proadrenomedullin for mortality prediction in sepsis with varying levels of illness severity. Ann Intensive Care. 2017;7(1):15. doi: 10.1186/s13613-017-0238-9.
    1. Travaglino F, De Berardinis B, Magrini L, Bongiovanni C, Candelli M, Silveri NG, et al. Utility of Procalcitonin (PCT) and mid regional pro-Adrenomedullin (MR-proADM) in risk stratification of critically ill febrile patients in emergency department (ED). A comparison with APACHE II score. BMC Infect Dis. 2012;12:184. doi: 10.1186/1471-2334-12-184.
    1. van der Starre WE, Zunder SM, Vollaard AM, van Nieuwkoop C, Stalenhoef JE, Delfos NM, et al. Prognostic value of pro-adrenomedullin, procalcitonin and C-reactive protein in predicting outcome of febrile urinary tract infection. Clin Microbiol Infect. 2014;20(10):1048–1054. doi: 10.1111/1469-0691.12645.
    1. Albrich WC, Dusemund F, Ruegger K, Christ-Crain M, Zimmerli W, Bregenzer T, et al. Enhancement of CURB65 score with proadrenomedullin (CURB65-a) for outcome prediction in lower respiratory tract infections: derivation of a clinical algorithm. BMC Infect Dis. 2011;11:112. doi: 10.1186/1471-2334-11-112.
    1. Albrich WC, Ruegger K, Dusemund F, Schuetz P, Arici B, Litke A, et al. Biomarker-enhanced triage in respiratory infections: a proof-of-concept feasibility trial. Eur Respir J. 2013;42(4):1064–1075. doi: 10.1183/09031936.00113612.
    1. Albrich WC, Ruegger K, Dusemund F, Bossart R, Regez K, Schild U, et al. Optimised patient transfer using an innovative multidisciplinary assessment in Kanton Aargau (OPTIMA I): an observational survey in lower respiratory tract infections. Swiss Med Wkly. 2011;141:w13237.
    1. Hartmann O, Schuetz P, Albrich WC, Anker SD, Mueller B, Schmidt T. Time-dependent cox regression: serial measurement of the cardiovascular biomarker proadrenomedullin improves survival prediction in patients with lower respiratory tract infection. Int J Cardiol. 2012;161(3):166–173. doi: 10.1016/j.ijcard.2012.09.014.

Source: PubMed

3
Sottoscrivi