Effect of the combination of photobiomodulation therapy and the intralesional administration of corticoid in the preoperative and postoperative periods of keloid surgery: A randomized, controlled, double-blind trial protocol study

Jefferson André Pires, Erick Frank Bragato, Marcos Momolli, Marina Bertoni Guerra, Leonel Manea Neves, Meire Augusto de Oliveira Bruscagnin, Anna Carolina Ratto Tempestini Horliana, Kristianne Porta Santos Fernandes, Sandra Kalil Bussadori, Raquel Agnelli Mesquita Ferrari, Jefferson André Pires, Erick Frank Bragato, Marcos Momolli, Marina Bertoni Guerra, Leonel Manea Neves, Meire Augusto de Oliveira Bruscagnin, Anna Carolina Ratto Tempestini Horliana, Kristianne Porta Santos Fernandes, Sandra Kalil Bussadori, Raquel Agnelli Mesquita Ferrari

Abstract

Keloid scars are characterized by the excessive proliferation of fibroblasts and an imbalance between the production and degradation of collagen, leading to its buildup in the dermis. There is no "gold standard" treatment for this condition, and the recurrence is frequent after surgical procedures removal. In vitro studies have demonstrated that photobiomodulation (PBM) using the blue wavelength reduces the proliferation speed and the number of fibroblasts as well as the expression of TGF-β. There are no protocols studied and established for the treatment of keloids with blue LED. Therefore, the purpose of this study is to determine the effects of the combination of PBM with blue light and the intralesional administration of the corticoid triamcinolone hexacetonide on the quality of the remaining scar by Vancouver Scar Scale in the postoperative period of keloid surgery. A randomized, controlled, double-blind, clinical trial will be conducted involving two groups: 1) Sham (n = 29): intralesional administration of corticoid (IAC) and sham PBM in the preoperative and postoperative periods of keloid removal surgery; and 2) active PBM combined with IAC (n = 29) in the preoperative and postoperative periods of keloid removal surgery. Transcutaneous PBM will be performed on the keloid region in the preoperative period and on the remaining scar in the postoperative period using blue LED (470 nm, 400 mW, 4J per point on 10 linear points). The patients will answer two questionnaires: one for the assessment of quality of life (Qualifibro-UNIFESP) and one for the assessment of satisfaction with the scar (PSAQ). The team of five plastic surgeons will answer the Vancouver Scar Scale (VSS). All questionnaires will be administered one, three, six, and twelve months postoperatively. The keloids will be molded in silicone prior to the onset of treatment and prior to excision to assess pre-treatment and post-treatment size. The same will be performed for the remaining scar at one, three, six, and twelve months postoperatively. The removed keloid will be submitted to histopathological analysis for the determination of the quantity of fibroblasts, the organization and distribution of collagen (picrosirius staining), and the genic expression of TGF-β (qPCR). All data will be submitted to statistical analysis. Trial registration: This study is registered in ClinicalTrials.gov (ID: NCT04824612).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. SPIRIT figure as recommended by…
Fig 1. SPIRIT figure as recommended by 2013 SPIRIT statement.

References

    1. Ferreira LM. Guias de medicina ambulatorial e hospitalar da UNIFESP/EPM: Cirurgia Plástica. 1ªed. Barueri: Manole; 2007.
    1. Wolfram D, Tzankov A, Pülzl P, Piza-Katzer H. Hypertrophic scars and keloids a review of their pathophysiology, risk factors, and therapeutic management. Dermatol surg. 2009; 35 (2): 171–81. doi: 10.1111/j.1524-4725.2008.34406.x
    1. Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol. 2020; 26 (8): 360.
    1. Nangole FW, Agak GW. Keloid pathophysiology: fibroblast or inflammatory disorders? JPRAS Open. 2019; 22: 44–54. doi: 10.1016/j.jpra.2019.09.004
    1. Bock O, Schmid-Ott G, Malewski P, Mrowietz U. Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res. 2006; 297: 433–438. doi: 10.1007/s00403-006-0651-7
    1. Motoki THC, Isoldi FC, Brito MJA, Filho AG, Ferreira LM. Keloid negatively affects body image. Burns. 2019; 45 (3): 610–614. doi: 10.1016/j.burns.2018.10.009
    1. Arno AI, Gauglitz GG, Barret JP, Jeschke MG. Up-to-date approach to manage keloids and hypertrophic scars: a useful guide. Burns. 2014; 40 (7): 1255–66. doi: 10.1016/j.burns.2014.02.011
    1. Neligam PC, Gurtner GC. Cirurgia Plástica: Princípios. Tradução: Facina T et al.. 3ªed, Vol 1. Rio de Janeiro: Elsevier; 2015.
    1. Wang Z-C, Zhao W-Y, Cao Y, Liu Y-Q, Sun Q, Shi P, et al.. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front. Immunol. 2020; 11: 3185.
    1. Lee HS, Jung SE, Kim SK, Kim YS, Sohn S, Kim YC. Low-Level Light Therapy with 410 nm Light Emitting Diode Suppresses Collagen Synthesis in Human Keloid Fibroblasts: An In Vitro Study. Ann Dermatol. 2017; 29 (2): 149–155. doi: 10.5021/ad.2017.29.2.149
    1. Han B, Fan J, Liu L, Tian J, Gan C, Yang Z, et al.. Adipose-derived esenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers Med Sci. 2019; 34 (1): 1–10. doi: 10.1007/s10103-018-2567-9
    1. Fujiwara M, Muragaki Y, Ooshima A. Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol. 2005; 153 (2): 295–300. doi: 10.1111/j.1365-2133.2005.06698.x
    1. Marneros AG, Krieg T. Keloids: clinical diagnosis, pathogenesis, and treatment options. J Dtsch Dermatol Ges. 2004; 2 (11): 905–913. doi: 10.1046/j.1439-0353.2004.04077.x
    1. Colwell AS, Phan TT, Kong W, Longaker MT, Lorens PH. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Plast Reconstr Surg. 2005; 116 (5):1387–1390. doi: 10.1097/01.prs.0000182343.99694.28
    1. Sarrazy V, Billet F, Micallef L, Coulomb B, Desmoulière A. Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen. 2011; 19 (Suppl 1): s10–15. doi: 10.1111/j.1524-475X.2011.00708.x
    1. Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, et al.. Clinical and molecular effects on mature burn scars after treatment with a fractional CO(2) laser. Lasers Surg Med. 2012; 44 (7): 517–524. doi: 10.1002/lsm.22055
    1. Jagadeesan J, Bayat A. Transforming growth factor beta (TGFbeta) and keloid disease. Int J Surg. 2007; 5: 278–285. doi: 10.1016/j.ijsu.2006.04.007
    1. Gold MH, McGuire M, Mustoe TA, Pusic A, Sachdev M, Waibel J, et al.. International Advisory Panel on Scar Management. Updated international clinical recommendations on scar management: part 2—algorithms for scar prevention and treatment. Dermatol Surg. 2014; 40(8): 825–831. doi: 10.1111/dsu.0000000000000050
    1. Chen B, Ding J, Jin J, Song N, Liu Y. Continuous tension reduction to prevent keloid recurrence after surgical excision: preliminary experience in Asian patients. Dermatologic Therapy. 2020; 33:e13553. doi: 10.1111/dth.13553
    1. Gupta S, Kalra A. Efficacy and safety of intralesional 5-fluorouracil in the treatment of keloids. Dermatology. 2002; 204(2): 130–132. doi: 10.1159/000051830
    1. Davison SP, Dayan JH, Clemens MW, Sonni S, Wang A, Crane A. Efficacy of intralesional 5-fluorouracil and triamcinolone in the treatment of keloids. Aesthet Surg J. 2009; 29 (1): 40–46. doi: 10.1016/j.asj.2008.11.006
    1. Van Leeuwen MC, Bulstra AE, Van Leeuwen PA, Niessen FB. A new argon gas-based device for the treatment of keloid scars with the use of intralesional cryotherapy. J Plast Reconstr Aesthet Surg. 2014; 67: 1703. doi: 10.1016/j.bjps.2014.08.046
    1. Van Leeuwen MC, Van Der Wal MB, Bulstra AE, Galindo-Garre F, Molier J, Van Zuijlen PP, et al.. Intralesional cryotherapy for treatment of keloid scars: a prospective study. Plast Reconstr Surg. 2015; 135: 580. doi: 10.1097/PRS.0000000000000911
    1. Har-Shai Y, Dujovny E, Rohde E, Zouboulis CC. Effect of skin surface temperature on skin pigmentation during contact and intralesional cryosurgery of keloids. J Eur Acad Dermatol Venereol. 2007; 21: 191. doi: 10.1111/j.1468-3083.2006.01890.x
    1. Jin R, Huang X, Li H, Yuan Y, Li B, Cheng C, et al.. Laser therapy for prevention and treatment of pathologic excessive scars. Plast Reconstr Surg. 2013; 132 (6): 1747–1758. doi: 10.1097/PRS.0b013e3182a97e43
    1. Vrijman C, van Drooge AM, Limpens J, Bos JD, van der Veen JP, Spuls PI, et al.. Laser and intense pulsed light therapy for the treatment of hypertrophic scars: a systematic review. Br J Dermatol. 2011. Nov; 165(5): 934–942. doi: 10.1111/j.1365-2133.2011.10492.x
    1. Van Drooge AM, Vrijman C, Van Der Veen W, Wolkerstorfer A. A randomized controlled pilot study on ablative fractional CO2 laser for consecutive patients presenting with various scar types. Dermatol Surg. 2015; 41: 371. doi: 10.1097/DSS.0000000000000306
    1. Erol OO, Gurlek A, Agaoglu G, Topcuoglu E, Oz H. Treatment of hypertrophic scars and keloids using intense pulsed light (IPL). Aesthetic Plast Surg. 2008; 32 (6): 902–909. doi: 10.1007/s00266-008-9161-7
    1. Betarbet U, Blalock TW. Keloids: A Review of Etiology, Prevention, and Treatment. J Clin Aesthet Dermatol. 2020; 13 (2): 33–43.
    1. Shin JY, Lee JW, Roh SG, Lee NH, Yang KM. A Comparison of the Effectiveness of Triamcinolone and Radiation Therapy for Ear Keloids after Surgical Excision: A Systematic Review and Meta-Analysis. Plast Reconstr Surg. 2016; 137 (6): 1718–1725. doi: 10.1097/PRS.0000000000002165
    1. Huu ND, Huu SN, Thi XL, Van TN, Minh PPT, Minh TT, et al.. Successful Treatment of Intralesional Triamcilonon Acetonide Injection in Keloid Patients. Open Access Maced J Med Sci. 2019; 7 (2): 275–278. doi: 10.3889/oamjms.2019.093
    1. Chen AD, Chen RF, Li YT, Huang YT, Lin SD, Lai CS, et al.. Triamcinolone Acetonide Suppresses Keloid Formation Through Enhancing Apoptosis in a Nude Mouse Model. Ann Plast Surg. 2019. 83 (4S Suppl 1): S50–S54.
    1. Ledon JA, Savas J, Franca K, Chacon A, Nouri K. Intralesional treatment for keloids and hypertrophic scars: a review. Dermatol Surg. 2013; 39 (12): 1745–1757. doi: 10.1111/dsu.12346
    1. Sclafani AP, Gordon L, Chadha M, Romo T. Prevention of earlobe keloid recurrence with postoperative corticosteroid injections versus radiation therapy: a randomized, prospective study and review of the literature. Dermatol Surg. 1996; 22: 569. doi: 10.1111/j.1524-4725.1996.tb00376.x
    1. Hamrick M, Boswell W, Carney D. Successful treatment of earlobe keloids in the pediatric population. J Pediatr Surg. 2009; 44: 286. doi: 10.1016/j.jpedsurg.2008.10.058
    1. Shons AR, Press BH. The treatment of earlobe keloids by surgical excision and postoperative triamcinolone injection. Ann Plast Surg. 1983; 10: 480. doi: 10.1097/00000637-198306000-00008
    1. Berman B, Flores F. Recurrence rates of excised keloids treated with postoperative triamcinolone acetonide injections or interferon alfa-2b injections. J Am Acad Dermatol. 1997; 37 (5 Pt 1): 755–757. doi: 10.1016/s0190-9622(97)70113-0
    1. Kiil J. Keloids treated with topical injections of triamcinolone acetonide (kenalog). Immediate and long-term results. Scand J Plast Reconstr Surg. 1977; 11: 169. doi: 10.3109/02844317709025514
    1. Jung JY, Roh MR, Kwon YS, Chung KY. Surgery and perioperative intralesional corticosteroid injection for treating earlobe keloids: a korean experience. Ann Dermatol. 2009; 21: 221. doi: 10.5021/ad.2009.21.3.221
    1. Fernandes KPS, Ferrari RAM, França CM. Biofotônica: Conceitos e Aplicações. 1ª ed. São Paulo: Universidade Nove de Julho; 2017.
    1. de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016; 22 (3): 7000417. doi: 10.1109/JSTQE.2016.2561201
    1. Barolet D, Boucher A. Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: a case series. Lasers Surg Med. 2010; 42: 597–601. doi: 10.1002/lsm.20952
    1. Ojea AR, Madi O, Neto RM, Lima SE, de Carvalho BT, Ojea MJ, et al.. Beneficial Effects of Applying Low-Level Laser Therapy to Surgical Wounds After Bariatric Surgery. Photomed Laser Surg. 2016. Nov; 34 (11): 580–584. doi: 10.1089/pho.2016.4149
    1. Freitas CP, Melo C, Alexandrino AM, Noites A. Efficacy of low-level laser therapy on scar tissue. J Cosmet Laser Ther. 2013; 15 (3): 171–176. doi: 10.3109/14764172.2013.769272
    1. Alsharnoubi J, Shoukry KE, Fawzy MW, Mohamed O. Evaluation of scars in children after treatment with low-level laser. Lasers Med Sci. 2018; 33 (9):1991–1995. doi: 10.1007/s10103-018-2572-z
    1. Epstein JB, Raber-Durlacher JE, Huysmans MC, Schoordijk MCE, Cheng JE, Bensadoun RJ, et al.. Photobiomodulation Therapy Alleviates Tissue Fibroses Associated with Chronic Graft-Versus-Host Disease: Two Case Reports and Putative Anti-Fibrotic Roles of TGF-β. Photomed Laser Surg. 2018; 36 (2): 92–99. doi: 10.1089/pho.2017.4297
    1. Herascu N, Velciu B, Calin M, Savastru D, Talianu C. Low-level laser therapy (LLLT) efficacy in post-operative wounds. Photomed Laser Surg. 2005; 23 (1):70–73. doi: 10.1089/pho.2005.23.70
    1. Ramos RM, Burland M, Silva JB, Burman LM, Gelain MS, Debom LM, et al.. Photobiomodulation Improved the First Stages of Wound Healing Process After Abdominoplasty: An Experimental, Double-Blinded, Non-randomized Clinical Trial. Aesthetic Plast Surg. 2019; 43 (1): 147–154. doi: 10.1007/s00266-018-1271-2
    1. Carvalho RL, Alcântara PS, Kamamoto F, Cressoni MD, Casarotto RA. Effects of low-level laser therapy on pain and scar formation after inguinal herniation surgery: a randomized controlled single-blind study. Photomed Laser Surg. 2010; 28 (3): 417–422. doi: 10.1089/pho.2009.2548
    1. Fujii S, Oshiro T, Oshiro T, Sasaki K, Taniguchi Y. Low reactive level laser therapy (lllt) for the treatment of hypertrophic scars and keloids. A re-introduction. Laser Therapy. 2008; 17 (1): 35–43.
    1. Park YJ, Kim SJ, Song HS, Kim SK, Lee J, Soh EY, et al.. Prevention of Thyroidectomy Scars in Asian Adults With Low-Level Light Therapy. Dermatol Surg. 2016; 42 (4): 526–534. doi: 10.1097/DSS.0000000000000680
    1. Han B, Fan J, Liu L, Tian J, Gan C, Yang Z, et al.. H. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers Med Sci. 2019; 34 (1):1–10. doi: 10.1007/s10103-018-2567-9
    1. Mamalis A, Koo E, Garcha M, Murphy WJ, Isseroff RR, Jagdeo J. High fluence light emitting diode-generated red light modulates characteristics associated with skin fibrosis. J Biophotonics. 2016; 9 (11–12):1167–1179. doi: 10.1002/jbio.201600059
    1. Mignon C, Uzunbajakava NE, Castellano-Pellicena I, Botchkareva NV, Tobin DJ. Differential response of human dermal fibroblast subpopulations to visible and near-infrared light: Potential of photobiomodulation for addressing cutaneous conditions. Lasers Surg Med. 2018; 50 (8): 859–882. doi: 10.1002/lsm.22823
    1. Opländer C, Hidding S, Werners FB, Born M, Pallua N, Suschek CV. Effects of blue light irradiation on human dermal fibroblasts. J Photochem Photobiol B. 2011; 103 (2):118–125. doi: 10.1016/j.jphotobiol.2011.02.018
    1. Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg. 2006; 24 (6): 705–714. doi: 10.1089/pho.2006.24.705
    1. Lev-Tov H, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using low-level infrared light-emitting diodes. Dermatol Surg. 2013; 39 (3 Pt 1): 422–425. doi: 10.1111/dsu.12087
    1. Frigo L, Fávero GM, Lima HJ, Maria DA, Bjordal JM, Joensen J, et al.. Low-level laser irradiation (InGaAlP-660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner. Photomed Laser Surg. 2010; 28 (Suppl 1): S151–156. doi: 10.1089/pho.2008.2475
    1. Bonatti S, Hochman B, Tucci-Viegas VM, Furtado F, Pinfildi CE, Pedro AC, et al.. In vitro effect of 470 nm LED (Light Emitting Diode) in keloid fibroblasts. Acta Cir Bras. 2011; 26 (1): 25–30. doi: 10.1590/s0102-86502011000100006
    1. Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol. 2018; 94 (2):199–212. doi: 10.1111/php.12864
    1. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005; 23 (4): 355–361. doi: 10.1089/pho.2005.23.355
    1. Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018;17(8):1003–1017. doi: 10.1039/c8pp90049c
    1. Hewedy ES, Sabaa BEI, Mohamed WS, Hegab DS. Combined intralesional triamcinolone acetonide and platelet rich plasma versus intralesional triamcinolone acetonide alone in treatment of keloids. J Dermatolog Treat. 2020; 4: 1–7. doi: 10.1080/09546634.2020.1730742
    1. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988; 124 (6): 869–871. doi: 10.1001/archderm.124.6.869
    1. Furtado FMP. Tradução para o idioma português, adaptação cultural e confiabilidade do Questionnaire of Quality of Life for Patients with Keloid and Hypertrophic Scarring [dissertação]. São Paulo: Escola Paulista de Medicina, Universidade Federal de São Paulo, 2008. Avaliable from: .
    1. Durani P, McGrouther DA, Ferguson MW. The Patient Scar Assessment Questionnaire: a reliable and valid patient-reported outcomes measure for linear scars. Plast Reconstr Surg. 2009; 123(5): 1481–1489. doi: 10.1097/PRS.0b013e3181a205de
    1. Ota AS. Tradução para a língua portuguesa, adaptação cultural para o Brasil e validação do patient scar assessment questionnaire. 2016. 155f. Dissertação (mestrado)- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP). São Paulo, 2016. Avaliable fro,: .
    1. Sullivan T, Smith J, Kermode J, McIver E, Courtemanche DJ. Rating the burn scar. J Burn Care Rehabil. 1990;11 (3): 256–260. doi: 10.1097/00004630-199005000-00014
    1. Santos MC, Tibola J, Marques CMG. Traduação, revalidação e confiabilidade de Cicatrização de Vancouver para língua portuguesa–Brasil. Rev Bras Queimaduras. 2014; 13: 26–30.
    1. Hochman B, Ishizuka CK, Ferreia LM, Oliveira LQR de , Locali RF. Revisão. ESTIMA [Internet]. 2004. Sep. 1 [cited 2021 May 28];2(3). Available from:

Source: PubMed

3
Sottoscrivi