Clown-care reduces pain in children with cerebral palsy undergoing recurrent botulinum toxin injections- A quasi-randomized controlled crossover study

Hilla Ben-Pazi, Avraham Cohen, Naama Kroyzer, Renana Lotem-Ophir, Yaakov Shvili, Gidon Winter, Lisa Deutsch, Yehuda Pollak, Hilla Ben-Pazi, Avraham Cohen, Naama Kroyzer, Renana Lotem-Ophir, Yaakov Shvili, Gidon Winter, Lisa Deutsch, Yehuda Pollak

Abstract

Objective: We investigated the impact of clown-care on pain in 45 children with cerebral palsy who underwent recurrent Botulinum-toxin injections (age 7.04± 4.68 years). Participants were randomized to receive either clown (n = 20) or standard (n = 25) -care.

Methods: Pain Visual-Analogue-Scale (range 1-5) was reported before and after procedures. Pain assessment was lower for children undergoing Botulinum-toxin injections with clown-care (2.89± 1.36) compared to standard-care (3.85± 1.39; p = 0.036) even though pain anticipated prior to procedures was similar (~3).

Findings: Children who underwent the first procedure with clown-care reported lower pain even after they crossed-over to the following procedure which was standard (p = 0.048). Carryover effect was more prominent in injection-naïve children (p = 0.019) and during multiple procedures (p = 0.009). Prior pain experience correlated with pain in subsequent procedures only when first experience was standard-care (p = 0.001).

Conclusions: Clown-care alleviated pain sensation during Botulinum-toxin injections and initial clown-care experience reduced pain during subsequent injections even though clowns were not present.

Trial registration: clinicaltrials.gov ID # NCT01377883.

Conflict of interest statement

Competing Interests: We have the following interests. Lisa Deutsch is the owner of Biostatistical Consulting. Payment to BioStats for statistical analysis was covered by Magi Foundation. There are no patents, products in development or marketed products to declare. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Fig 1. CONSORT flow diagram.
Fig 1. CONSORT flow diagram.
Study design process: enrollment, randomization, Allocation, follow-up and analysis.
Fig 2. Medical clowning effect before, during…
Fig 2. Medical clowning effect before, during and after BTX injections.
Before: Clown engaging and distracting the anxious child who pays attention to the scene in front of him. During the injection: Clown and child in a secluded atmosphere at the other end of the table; parent watching with a smile. After: Child is laughing leaving the room empowered.
Fig 3. Pain (Visual Analogue Scale) after…
Fig 3. Pain (Visual Analogue Scale) after BTX injections with and without clown-care.
Box plots (diamond = mean, solid line in center = median) of pain after the first procedure according to the Visual Analogue Scale (VAS; range 1 = no pain to 5 = severe pain): After the procedure the pain was experienced as moderate for the clown group (black) and severe in controls (grey).
Fig 4. Carry over effect—Pain levels remained…
Fig 4. Carry over effect—Pain levels remained constant despite crossover (with/without clowning).
(A) Pain levels (VAS-after LSmean ±SE) remained stable in each group (grey solid line: clowning 1st-> standard 2nd; black dashed line: standard 1st-> clowning 2nd) and did not change between the first and second procedure. However, pain was lower for children who received clowning during the first injection (grey) compared to those who received clowning only on the second injection (black). (B) Anticipated pain (before) did not correlate with experienced pain (after) the first procedure for both groups. (C) However, pain experience (after) correlated with anticipated pain (before) of the second injection for those who received standard procedure in the first time (black) but not for those who previously received clowning (grey).
Fig 5. Pain as a function of…
Fig 5. Pain as a function of clown presence during first procedure (longitudinal).
Pain levels (VAS-after LSmean ± SE) were lower for the children receiving clown care during the first injection (grey solid line) and remained low (VAS4) for children who did not receive clown care during the first injections.

References

    1. Hagberg B, Hagberg G, Olow I, von Wendt L. The changing panorama of cerebral palsy in Sweden. VII. Prevalence and origin in the birth year period 1987–90. Acta Paediatr. 1996;85(8):954–60.
    1. Engel JM, Petrina TJ, Dudgeon BJ, McKearnan KA. Cerebral palsy and chronic pain: a descriptive study of children and adolescents. Phys Occup Ther Pediatr. 2005;25(4):73–84.
    1. Castle K, Imms C, Howie L. Being in pain: a phenomenological study of young people with cerebral palsy. Dev Med Child Neurol. 2007;49(6):445–9. 10.1111/j.1469-8749.2007.00445.x
    1. Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Developmental medicine and child neurology. 2013;55(10):885–910. 10.1111/dmcn.12246
    1. Sanger TD. Hypertonia in children: how and when to treat. Curr Treat Options Neurol. 2005;7(6):427–39.
    1. Bakheit AM. Botulinum toxin in the management of childhood muscle spasticity: comparison of clinical practice of 17 treatment centres. Eur J Neurol. 2003;10(4):415–9.
    1. Brochard S, Blajan V, Lempereur M, Garlantezec R, Houx L, Le Moine P, et al. Determining the technical and clinical factors associated with pain for children undergoing botulinum toxin injections under nitrous oxide and anesthetic cream. European journal of paediatric neurology: EJPN: official journal of the European Paediatric Neurology Society. 2011;15(4):310–5.
    1. Kumar R, Sneade C, Littler K. Effectiveness of sedation using nitrous oxide compared with enteral midazolam for botulinum toxin A injections in children. Developmental medicine and child neurology. 2009;51(10):838–9. 10.1111/j.1469-8749.2009.03355.x
    1. Gubbay A, Langdon K, Zier JL, Rivard PF, Krach LE, Wendorf HR. ‘Effectiveness of sedation using nitrous oxide compared with enteral midazolam for botulinum toxin A injections in children’. Developmental medicine and child neurology. 2009;51(6):491–2; author reply 2. 10.1111/j.1469-8749.2009.03297_1.x
    1. Minute M, Badina L, Cont G, Montico M, Ronfani L, Barbi E, et al. Videogame playing as distraction technique in course of venipuncture. Pediatr Med Chir. 2012;34(2):77–83. 10.4081/pmc.2012.64
    1. Hicks CL, von Baeyer CL, McGrath PJ. Online psychological treatment for pediatric recurrent pain: a randomized evaluation. J Pediatr Psychol. 2006;31(7):724–36. 10.1093/jpepsy/jsj065
    1. Eccleston C, Palermo TM, de CWAC, Lewandowski A, Morley S, Fisher E, et al. Psychological therapies for the management of chronic and recurrent pain in children and adolescents. Cochrane Database Syst Rev.12:CD003968 10.1002/14651858.CD003968.pub3
    1. Linge L. Joyful and serious intentions in the work of hospital clowns: a meta-analysis based on a 7-year research project conducted in three parts. Int J Qual Stud Health Well-being. 2013;8:1–8.
    1. Fernandes SC, Arriaga P. The effects of clown intervention on worries and emotional responses in children undergoing surgery. J Health Psychol. 2010;15(3):405–15. 10.1177/1359105309350231
    1. Golan G, Tighe P, Dobija N, Perel A, Keidan I. Clowns for the prevention of preoperative anxiety in children: a randomized controlled trial. Paediatr Anaesth. 2009;19(3):262–6. 10.1111/j.1460-9592.2008.02903.x
    1. Vagnoli L, Caprilli S, Messeri A. Parental presence, clowns or sedative premedication to treat preoperative anxiety in children: what could be the most promising option? Paediatr Anaesth. 2010;20(10):937–43. 10.1111/j.1460-9592.2010.03403.x
    1. Felluga M, Rabach I, Minute M, Montico M, Giorgi R, Lonciari I, et al. A quasi randomized-controlled trial to evaluate the effectiveness of clowntherapy on children's anxiety and pain levels in emergency department. European journal of pediatrics. 2016;175(5):645–50. 10.1007/s00431-015-2688-0
    1. Wolyniez I, Rimon A, Scolnik D, Gruber A, Tavor O, Haviv E, et al. The effect of a medical clown on pain during intravenous access in the pediatric emergency department: a randomized prospective pilot study. Clin Pediatr (Phila). 2013;52(12):1168–72.
    1. Yael Weintraub M, Hanuka P, Michal Rothschild M, Yosef Uziel M. medical clowns Facilitate nitrous oxide sedation during intra-articular corticosteroid injection for Juvenile idiopathic arthritis.
    1. Uman LS, Chambers CT, McGrath PJ, Kisely S. Psychological interventions for needle-related procedural pain and distress in children and adolescents. Cochrane Database Syst Rev. 2006(4):CD005179 10.1002/14651858.CD005179.pub2
    1. Uman LS, Chambers CT, McGrath PJ, Kisely S. A systematic review of randomized controlled trials examining psychological interventions for needle-related procedural pain and distress in children and adolescents: an abbreviated cochrane review. J Pediatr Psychol. 2008;33(8):842–54. 10.1093/jpepsy/jsn031
    1. Scheffer AR, Erasmus C, van Hulst K, van Limbeek J, Jongerius PH, van den Hoogen FJ. Efficacy and duration of botulinum toxin treatment for drooling in 131 children. Archives of otolaryngology—head & neck surgery. 2010;136(9):873–7.
    1. Raphael BS, Dines JS, Akerman M, Root L. Long-term Followup of Total Hip Arthroplasty in Patients with Cerebral Palsy. Clinical Orthopaedics and Related Research. 2010;468(7):1845–54. 10.1007/s11999-009-1167-1
    1. Voepel-Lewis T, Malviya S, Tait AR. Validity of Parent Ratings as Proxy Measures of Pain in Children with Cognitive Impairment. Pain Management Nursing.6(4):168–74. 10.1016/j.pmn.2005.08.004
    1. Crocker PJ, Higginbotham E, King BT, Taylor D, Milling TJ. Comprehensive pain management protocol reduces children's memory of pain at discharge from the pediatric ED. The American journal of emergency medicine. 2012;30(6):861–71. 10.1016/j.ajem.2011.05.030
    1. Weisman SJ, Bernstein B, Schechter NL. Consequences of inadequate analgesia during painful procedures in children. Archives of pediatrics & adolescent medicine. 1998;152(2):147–9.
    1. Noel M, Chambers CT, Petter M, McGrath PJ, Klein RM, Stewart SH. Pain is not over when the needle ends: a review and preliminary model of acute pain memory development in childhood. Pain Manag. 2012;2(5):487–97. 10.2217/pmt.12.41
    1. Knaepen L, Patijn J, van Kleef M, Mulder M, Tibboel D, Joosten EA. Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life. Dev Neurobiol. 2013;73(1):85–97. 10.1002/dneu.22047
    1. Dunbar RIM, Baron R, Frangou A, Pearce E, van Leeuwen EJC, Stow J, et al. Social laughter is correlated with an elevated pain threshold. Proceedings of the Royal Society B: Biological Sciences. 2012;279(1731):1161–7. 10.1098/rspb.2011.1373
    1. Friedler S, Glasser S, Azani L, Freedman LS, Raziel A, Strassburger D, et al. The effect of medical clowning on pregnancy rates after in vitro fertilization and embryo transfer. Fertil Steril. 2011;95(6):2127–30. 10.1016/j.fertnstert.2010.12.016
    1. Charles JA, Jotkowitz S. Observations of the “carry–over effect”. The Journal of Headache and Pain. 2005;6(1):51–4.
    1. Rothrock JF, Mendizabal JE. An Analysis of the “Carry-over Effect” Following Successful Short-term Treatment of Transformed Migraine With Divalproex Sodium. Headache: The Journal of Head and Face Pain. 2000;40(1):17–9.
    1. Hansen LK, Kibaek M, Martinussen T, Kragh L, Hejl M. Effect of a clown's presence at botulinum toxin injections in children: a randomized, prospective study. J Pain Res. 2011;4:297–300. 10.2147/JPR.S23199
    1. von Baeyer CL. Children’s self-reports of pain intensity: Scale selection, limitations and interpretation. Pain Res Manag. 2006;11(3):157–62.
    1. Gulur P, Rodi SW, Washington TA, Cravero JP, Fanciullo GJ, McHugo GJ, et al. Computer Face Scale for measuring pediatric pain and mood. J Pain. 2009;10(2):173–9. 10.1016/j.jpain.2008.08.005
    1. Voepel-Lewis T, Malviya S, Tait AR. Validity of parent ratings as proxy measures of pain in children with cognitive impairment. Pain management nursing: official journal of the American Society of Pain Management Nurses. 2005;6(4):168–74.

Source: PubMed

3
Sottoscrivi