Nasal carriage of Staphylococcus aureus in children with grass pollen-induced allergic rhinitis and the effect of polyvalent mechanical bacterial lysate immunostimulation on carriage status: A randomized controlled trial

Kamil Janeczek, Andrzej Emeryk, Łukasz Zimmer, Ewa Poleszak, Michał Ordak, Kamil Janeczek, Andrzej Emeryk, Łukasz Zimmer, Ewa Poleszak, Michał Ordak

Abstract

Background: Numerous studies indicate that Staphylococcus aureus (S. aureus) colonizing the nasal cavity plays a role in the pathogenesis of allergic rhinitis (AR). This bacterium is able to produce a variety of toxins with superantigenic properties that can exacerbate allergic inflammation.

Objective: The objective of the study was to evaluate the ability of polyvalent mechanical bacterial lysate (PMBL) to eliminate S. aureus nasal carriage in children with grass pollen-induced AR.

Methods: This randomized, double-blind, placebo-controlled study included 80 children aged 5-17 years with seasonal AR (SAR). At the randomization visit and after 12 weeks of the study, a swab was taken from the region of the middle nasal meatus. Standard microbiology culture and identification techniques were used to analyze the swab contents.

Results: Nasal colonization by S. aureus was confirmed in 29 children (42%), with Moraxella catarrhalis in three participants (4.4%). Physiological flora was detected in 37 children. No statistically significant differences were observed between the two measurement points in both the PMBL and placebo groups with respect to the number of patients whose nasal swab cultures showed a growth of S. aureus (p = 1). Both groups also showed no significant changes in the mean number of S. aureus colonies in nasal swab cultures taken at baseline and after 12 weeks of the study (PMBL group p = .41; placebo group p = .16).

Conclusion: Almost every second child with SAR is S. aureus nasal carrier. Sublingual administration of PMBL in children with grass pollen-induced AR did not affect S. aureus nasal colonization. Therefore, PMBL should not be used for the eradication of S. aureus from the nasal cavity.

Keywords: Staphylococcus aureus; allergic rhinitis; bacterial lysate; children; nasal colonization.

© 2021 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Study design
Figure 2
Figure 2
Participant flow diagram. PMBL, polyvalent mechanical bacterial lysate
Figure 3
Figure 3
Mechanisms of nasal Staphylococcus aureus and its toxins on allergic rhinitis—own elaboration based on [9–11,44,46,49]. ECP, eosinophil cationic protein; EDN, eosinophil‐derived neurotoxin; EPO, eosinophil peroxidase; GM‐CSF, granulocyte‐macrophage colony‐stimulating factor; HETE, hydroxyeicosatetraenoic acid; ICAM‐1, intercellular adhesion molecule 1; IL, interleukin; LT, leukotriene; MBP, major basic protein; PAF, platelet‐activating factor; PG, prostaglandin; TGF‐β, transforming growth factor‐beta; Th2, T‐helper type‐2; TNF‐α, tumor necrosis factor‐alpha; TX, thromboxane; VCAM‐1, vascular cell adhesion molecule 1

References

    1. Cingi C, Bayar Muluk N, Scadding GK. Will every child have allergic rhinitis soon? Int J Pediatr Otorhinolaryngol. 2019;118:53‐58.
    1. Asher MI, Montefort S, Björkstén B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross‐sectional survey. Lancet. 2006;368(9537):733‐43.
    1. The International Study of Asthma and Allergies in Childhood (ISAAC) . Steering Committee: worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema. Lancet. 1998;351(9111):1225‐1232.
    1. Dass K, Petrusan AJ, Beaumont J, Zee P, Lai JS, Fishbein A. Assessment of sleep disturbance in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2017;118(4):505‐506.
    1. Mir E, Panjabi C, Shah A. Impact of allergic rhinitis in school going children. Asia Pac Allergy. 2012;2(2):93‐100.
    1. Sih T, Mion O. Allergic rhinitis in the child and associated comorbidities. Pediatr Allergy Immunol. 2010;21(1 Pt 2):e107‐e113.
    1. Bertelsen RJ, Carlsen KC, Carlsen KH. Rhinitis in children: co‐morbidities and phenotypes. Pediatr Allergy Immunol. 2010;21(4 Pt 1):612‐622.
    1. Meltzer EO, Blaiss MS, Derebery MJ, et al. Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. J Allergy Clin Immunol. 2009;124(3 Suppl):S43‐S70.
    1. Shiomori T, Yoshida S, Miyamoto H, Makishima K. Relationship of nasal carriage of Staphylococcus aureus to pathogenesis of perennial allergic rhinitis. J Allergy Clin Immunol. 2000;105(3):449‐454.
    1. Riechelmann H, Essig A, Deutschle T, Rau A, Rothermel B, Weschta M. Nasal carriage of Staphylococcus aureus in house dust mite allergic patients and healthy controls. Allergy. 2005;60(11):1418‐1423.
    1. Refaat MM, Ahmed TM, Ashour ZA, Atia MY. Immunological role of nasal staphylococcus aureus carriage in patients with persistent allergic rhinitis. Pan Afr Med J. 2008;1:3.
    1. Hessam W, Elazab S. Effect of nasal carriage of Staphylococcus aureus on allergic rhinitis patients. Egypt J Med Lab Sci. 2013;22(2):185‐190.
    1. Davis MF, Peng RD, McCormack MC, Matsui EC. Staphylococcus aureus colonization is associated with wheeze and asthma among US children and young adults. J Allergy Clin Immunol. 2015;135(3):811‐813. e5.
    1. Semic‐Jusufagic A, Bachert C, Gevaert P, et al. Staphylococcus aureus sensitization and allergic disease in early childhood: population‐based birth cohort study. J Allergy Clin Immunol. 2007;119(4):930‐936.
    1. Tsilochristou O, du Toit G, Sayre PH, et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immunol. 2019;144(2):494‐503.
    1. Lanzilli G, Falchetti R, Tricarico M, Ungheri D, Fuggetta MP. In vitro effects of an immunostimulating bacterial lysate on human lymphocyte function. Int J Immunopathol Pharmacol. 2005;18(2):245‐254.
    1. Macchi A, Vecchia LD. Open comparative, randomized controlled clinical study of a new immunostimulating bacterial lysate in the prophylaxis of upper respiratory tract infections. Arzneimittelforschung. 2005;55(5):276‐281.
    1. Cazzola M, Anapurapu S, Page CP. Polyvalent mechanical bacterial lysate for the prevention of recurrent respiratory infections: a meta‐analysis. Pulm Pharmacol Ther. 2012;25(1):62‐68.
    1. Braido F, Schenone G, Pallestrini E, et al. The relationship between mucosal immunoresponse and clinical outcome in patients with recurrent upper respiratory tract infections treated with a mechanical bacterial lysate. J Biol Regul Homeost Agents. 2011;25(3):477‐485.
    1. Jurkiewicz D, Zielnik‐Jurkiewicz B. Bacterial lysates in the prevention of respiratory tract infections. Otolaryngol Pol. 2018;72(5):1‐8.
    1. Yin J, Xu B, Zeng X, Shen K. Broncho‐Vaxom in pediatric recurrent respiratory tract infections: a systematic review and meta‐analysis. Int Immunopharmacol. 2018;54:198‐209.
    1. Lau S, Gerhold K, Zimmermann K, et al. Oral application of bacterial lysate in infancy decreases the risk of atopic dermatitis in children with 1 atopic parent in a randomized, placebo‐controlled trial. J Allergy Clin Immunol. 2012;129(4):1040‐1047.
    1. Bodemer C, Guillet G, Cambazard F, et al. Adjuvant treatment with the bacterial lysate (OM‐85) improves management of atopic dermatitis: A randomized study. PLoS One. 2017;12(3):e0161555.
    1. Koatz AM, Coe NA, Cicerone A, Alter AJ. Clinical and immunological benefits of OM‐85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections. Lung. 2016;194(4):687‐697.
    1. Meng Q, Li P, Li Y, et al. Broncho‐vaxom alleviates persistent allergic rhinitis in patients by improving Th1/Th2 cytokine balance of nasal mucosa. Rhinology. 2019;57(6):451‐459.
    1. Janeczek KP, Emeryk A, Rapiejko P. Effect of polyvalent bacterial lysate on the clinical course of pollen allergic rhinitis in children. Adv Dermatol Allergol. 2019;36(4):504‐505.
    1. Janeczek K, Emeryk A, Rachel M, Duma D, Zimmer Ł, Poleszak E. Polyvalent mechanical bacterial lysate administration improves the clinical course of grass pollen‐induced allergic rhinitis in children: a randomized controlled trial. J Allergy Clin Immunol Pract. 2021;9(1):453‐62.
    1. Emeryk A, Bartkowiak‐Emeryk M, Raus Z, Braido F, Ferlazzo G, Melioli G. Mechanical bacterial lysate administration prevents exacerbation in allergic asthmatic children – The EOLIA study. Pediatr Allergy Immunol. 2018;29(4):394‐401.
    1. Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines ‐ 2016 revision. J Allergy Clin Immunol. 2017;140(4):950‐958.
    1. Buters JTM, Antunes C, Galveias A, et al. Pollen and spore monitoring in the world. Clin Transl Allergy. 2018;8:9.
    1. Taylor MB, Tan IT, Chan KT, Shen L, Shi L, Wang DY. A prospective study of bacterial flora in nasal cavity of patients with persistent allergic rhinitis. Rhinology. 2012;50(2):139‐146.
    1. Çevik C, Yula E, Yengil E, Gülmez Mİ, Akbay E. Identification of nasal bacterial flora profile and carriage rates of methicillin‐resistant Staphylococcus aureus in patients with allergic rhinitis. Eur Arch Otorhinolaryngol. 2014;271(1):103‐107.
    1. Leber AL. Clinical Microbiology Procedures Handbook. 4th ed. ASM Press; 2016.
    1. Lopez SMC, Martin JM, Johnson M, et al. A method of processing nasopharyngeal swabs to enable multiple testing. Pediatr Res. 2019;86(5):651‐654.
    1. Zeldin Y, Weiler Z, Cohen A, et al. Efficacy of nasal Staphylococcus aureus eradication by topical nasal mupirocin in patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2008;100(6):608‐611.
    1. Axelsson A, Brorson JE. The correlation between bacteriological findings in the nose and maxillary sinus in acute maxillary sinusitis. Laryngoscope. 1973;83(12):2003‐2011.
    1. Herwaldt LA, Cullen JJ, French P, et al. Preoperative risk factors for nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol. 2004;25(6):481‐484.
    1. Sewell CM, Clarridge J, Lacke C, Weinman EJ, Young EJ. Staphylococcal nasal carriage and subsequent infection in peritoneal dialysis patients. JAMA. 1982;248(12):1493‐1495.
    1. Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751‐762.
    1. Peacock SJ, Justice A, Griffiths D, et al. Determinants of acquisition and carriage of Staphylococcus aureus in infancy. J Clin Microbiol. 2003;41(12):5718‐5725.
    1. Alzoubi HM, Aqel AA, Al‐Sarayreh SA, Al‐Zayadneh E. Methicillin‐resistant Staphylococcus aureus nasal carriage among primary school‐aged children from Jordan: prevalence, antibiotic resistance and molecular characteristics. J Egypt Public Health Assoc. 2014;89(3):114‐118.
    1. Soysal A, Sahin H, Yagci A, Barlan I, Bakir M. The low rate of methicillin‐resistant Staphylococcus aureus in Turkish children. Jpn J Infect Dis. 2006;59(3):195‐196.
    1. Okano M, Takishita T, Yamamoto T, et al. Presence and characterization of sensitization to staphylococcal enterotoxins in patients with allergic rhinitis. Am J Rhinol. 2001;15(6):417‐421.
    1. Hohchi N, Hashida K, Ohkubo J, et al. Synergism of Staphylococcus aureus colonization and allergic reaction in the nasal cavity in mice. Int Arch Allergy Immunol. 2012;159(1):33‐40.
    1. Bhattacharyya N, Kepnes L. Bacterial colonization of nasal steroid inhalers in chronic rhinosinusitis. Am J Rhinol. 2002;16(6):319‐321.
    1. Bachert C, Gevaert P, van Cauwenberge P. Staphylococcus aureus enterotoxins: a key in airway disease? Allergy. 2002;57(6):480‐487.
    1. Rosenwasser LJ. Current understanding of the pathophysiology of allergic rhinitis. Immunol Allergy Clin North Am. 2011;31(3):433‐439.
    1. Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004;305(5691):1776‐1779.
    1. Okano M, Hattori H, Yoshino T, et al. Nasal exposure to Staphylococcal enterotoxin enhances the development of allergic rhinitis in mice. Clin Exp Allergy. 2005;35(4):506‐514.
    1. Hauk PJ, Wenzel SE, Trumble AE, Szefler SJ, Leung DY. Increased T‐cell receptor vbeta8+ T cells in bronchoalveolar lavage fluid of subjects with poorly controlled asthma: a potential role for microbial superantigens. J Allergy Clin Immunol. 1999;104(1):37‐45.
    1. Heaton T, Mallon D, Venaille T, Holt P. Staphylococcal enterotoxin induced IL‐5 stimulation as a cofactor in the pathogenesis of atopic disease: the hygiene hypothesis in reverse? Allergy. 2003;58(3):252‐256.
    1. Zagólski O, Stręk P, Kasprowicz A, Białecka A. Effectiveness of polyvalent bacterial lysate and autovaccines against upper respiratory tract bacterial colonization by potential pathogens: a randomized study. Med Sci Monit. 2015;21:2997‐3002.
    1. Baysoy G, Arslan S, Karabay O, Uyan AP. Nasal carriage of Staphylococcus aureus in children with allergic rhinitis and the effect of intranasal fluticasone propionate treatment on carriage status. Int J Pediatr Otorhinolaryngol. 2007;71(2):205‐209.
    1. Polat C, Uysal EB, Yüce S, Uysal IO, Koç S. The effect of topical mometasone furoate nasal spray on carriage of Staphylococcus aureus. Kulak Burun Bogaz Ihtis Derg. 2014;24(1):1‐5.
    1. Gould HJ, Takhar P, Harries HE, Chevretton E, Sutton BJ. The allergic march from Staphylococcus aureus superantigens to immunoglobulin E. Chem Immunol Allergy. 2007;93:106‐136.

Source: PubMed

3
Sottoscrivi