Upregulation of HLA Expression in Primary Uveal Melanoma by Infiltrating Leukocytes

T Huibertus van Essen, Sake I van Pelt, Inge H G Bronkhorst, Mieke Versluis, Fariba Némati, Cécile Laurent, Gregorius P M Luyten, Thorbald van Hall, Peter J van den Elsen, Pieter A van der Velden, Didier Decaudin, Martine J Jager, T Huibertus van Essen, Sake I van Pelt, Inge H G Bronkhorst, Mieke Versluis, Fariba Némati, Cécile Laurent, Gregorius P M Luyten, Thorbald van Hall, Peter J van den Elsen, Pieter A van der Velden, Didier Decaudin, Martine J Jager

Abstract

Introduction: Uveal melanoma (UM) with an inflammatory phenotype, characterized by infiltrating leukocytes and increased human leukocyte antigen (HLA) expression, carry an increased risk of death due to metastases. These tumors should be ideal for T-cell based therapies, yet it is not clear why prognostically-infaust tumors have a high HLA expression. We set out to determine whether the level of HLA molecules in UM is associated with other genetic factors, HLA transcriptional regulators, or microenvironmental factors.

Methods: 28 enucleated UM were used to study HLA class I and II expression, and several regulators of HLA by immunohistochemistry, PCR microarray, qPCR and chromosome SNP-array. Fresh tumor samples of eight primary UM and four metastases were compared to their corresponding xenograft in SCID mice, using a PCR microarray and SNP array.

Results: Increased expression levels of HLA class I and II showed no dosage effect of chromosome 6p, but, as expected, were associated with monosomy of chromosome 3. Increased HLA class I and II protein levels were positively associated with their gene expression and with raised levels of the peptide-loading gene TAP1, and HLA transcriptional regulators IRF1, IRF8, CIITA, and NLRC5, revealing a higher transcriptional activity in prognostically-bad tumors. Implantation of fresh human tumor samples into SCID mice led to a loss of infiltrating leukocytes, and to a decreased expression of HLA class I and II genes, and their regulators.

Conclusion: Our data provides evidence for a proper functioning HLA regulatory system in UM, offering a target for T-cell based therapies.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Chromosomal aberrations and HLA expression.
Fig 1. Chromosomal aberrations and HLA expression.
Comparison between chromosomal aberrations and the expression of HLA class I and II antigens in a set of 27 primary UM. Tumors are divided according to their chromosome 3 and 6 status (disomy or monosomy of chromosome 3, and disomy of chromosome 6 or gain of 6p). HLA gene expression was determined using an Illumina microarray (A) and protein expression by immunohistochemistry (B) in UM. Additionally, HLA gene expression was determined using qPCR, which served to validate the Illumina findings (C). Four data points of the qPCR that are outside the axis limits (> 11 and

Fig 2. Tumor infiltrating immune cells.

Association…

Fig 2. Tumor infiltrating immune cells.

Association between a low or high density of tumor-infiltrating…

Fig 2. Tumor infiltrating immune cells.
Association between a low or high density of tumor-infiltrating CD3+ (A), and CD68+ (B)cells and several HLA and HLA-related genes (Illumina array) in primary UM. CD3 (cells/mm2) and CD68 (pixels x 103/mm2) scores were dichotomized at the median.

Fig 3. Effect of the absence of…

Fig 3. Effect of the absence of human leukocytes.

Gene-expression (log 2 intensity values) of…

Fig 3. Effect of the absence of human leukocytes.
Gene-expression (log 2 intensity values) of HLA-B, HLA-DRA, CD3D (as marker for T-cells), and CD163 (as marker for macrophages), of the original tumors (patient) compared to the xenografts (xeno). MP’s are primary tumors; MM’s are metasisis.

Fig 4. Schematic illustration of tumor characteristics…

Fig 4. Schematic illustration of tumor characteristics and infiltrate.

UM with monosomy 3 attract an…

Fig 4. Schematic illustration of tumor characteristics and infiltrate.
UM with monosomy 3 attract an infiltrate, producing different cytokines, including Interferon-gamma. The tumor cell (UM cell) responds by increasing HLA class I and II levels, as well as rendering the infiltrating immune cells ineffective (immune suppression) and creating a tumor-favorable environment, with amongst others, stimulation of angiogenesis.
Fig 2. Tumor infiltrating immune cells.
Fig 2. Tumor infiltrating immune cells.
Association between a low or high density of tumor-infiltrating CD3+ (A), and CD68+ (B)cells and several HLA and HLA-related genes (Illumina array) in primary UM. CD3 (cells/mm2) and CD68 (pixels x 103/mm2) scores were dichotomized at the median.
Fig 3. Effect of the absence of…
Fig 3. Effect of the absence of human leukocytes.
Gene-expression (log 2 intensity values) of HLA-B, HLA-DRA, CD3D (as marker for T-cells), and CD163 (as marker for macrophages), of the original tumors (patient) compared to the xenografts (xeno). MP’s are primary tumors; MM’s are metasisis.
Fig 4. Schematic illustration of tumor characteristics…
Fig 4. Schematic illustration of tumor characteristics and infiltrate.
UM with monosomy 3 attract an infiltrate, producing different cytokines, including Interferon-gamma. The tumor cell (UM cell) responds by increasing HLA class I and II levels, as well as rendering the infiltrating immune cells ineffective (immune suppression) and creating a tumor-favorable environment, with amongst others, stimulation of angiogenesis.

References

    1. Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 2011. September;118(9):1881–5. 10.1016/j.ophtha.2011.01.040
    1. Kujala E, Makitie T, Kivela T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 2003. November;44(11):4651–9.
    1. Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res 2004. October 15;64(20):7205–9. 10.1158/0008-5472.CAN-04-1750
    1. Maat W, Ly LV, Jordanova ES, De Wolff-Rouendaal D, Schalij-Delfos NE, Jager MJ. Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. Invest Ophthalmol Vis Sci 2008. February;49(2):505–10. 10.1167/iovs.07-0786
    1. Scholes AG, Damato BE, Nunn J, Hiscott P, Grierson I, Field JK. Monosomy 3 in uveal melanoma: correlation with clinical and histologic predictors of survival. Invest Ophthalmol Vis Sci 2003. March;44(3):1008–11.
    1. White VA, Chambers JD, Courtright PD, Chang WY, Horsman DE. Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer 1998. July 15;83(2):354–9.
    1. Harbour JW. Molecular prognostic testing and individualized patient care in uveal melanoma. Am J Ophthalmol 2009. December;148(6):823–9. 10.1016/j.ajo.2009.07.004
    1. Coupland SE, Lake SL, Zeschnigk M, Damato BE. Molecular pathology of uveal melanoma. Eye (Lond) 2013. February;27(2):230–42.
    1. van Beek JG, Koopmans AE, Vaarwater J, de Rooi JJ, Paridaens D, Naus NC, et al. The prognostic value of extraocular extension in relation to monosomy 3 and gain of chromosome 8q in uveal melanoma. Invest Ophthalmol Vis Sci 2014;55(3):1284–91. 10.1167/iovs.13-13670
    1. Versluis M, de Lange MJ, van Pelt SI, Ruivenkamp CA, Kroes WG, Cao J, et al. Digital PCR validates 8q dosage as prognostic tool in uveal melanoma. PLoS One 2015;10(3):e0116371 10.1371/journal.pone.0116371
    1. Niederkorn JY, Wang S. Immunology of intraocular tumors. Ocul Immunol Inflamm 2005. February;13(1):105–10.
    1. Bronkhorst IH, Vu TH, Jordanova ES, Luyten GP, Burg SH, Jager MJ. Different subsets of tumor-infiltrating lymphocytes correlate with macrophage influx and monosomy 3 in uveal melanoma. Invest Ophthalmol Vis Sci 2012. August;53(9):5370–8. 10.1167/iovs.11-9280
    1. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009. July;30(7):1073–81. 10.1093/carcin/bgp127
    1. Ericsson C, Seregard S, Bartolazzi A, Levitskaya E, Ferrone S, Kiessling R, et al. Association of HLA class I and class II antigen expression and mortality in uveal melanoma. Invest Ophthalmol Vis Sci 2001. September;42(10):2153–6.
    1. Jager MJ, Hurks HM, Levitskaya J, Kiessling R. HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol 2002. June;63(6):444–51.
    1. Blom DJ, Schurmans LR, de Waard-Siebinga I, De Wolff-Rouendaal D, Keunen JE, Jager MJ. HLA expression in a primary uveal melanoma, its cell line, and four of its metastases. Br J Ophthalmol 1997. November;81(11):989–93.
    1. Ma D, Niederkorn JY. Transforming growth factor-beta down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. Immunology 1995. October;86(2):263–9.
    1. Blom DJ, Luyten GP, Mooy C, Kerkvliet S, Zwinderman AH, Jager MJ. Human leukocyte antigen class I expression. Marker of poor prognosis in uveal melanoma. Invest Ophthalmol Vis Sci 1997. August;38(9):1865–72.
    1. Mine KL, Shulzhenko N, Yambartsev A, Rochman M, Sanson GF, Lando M, et al. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat Commun 2013;4:1806 10.1038/ncomms2693
    1. Aure MR, Steinfeld I, Baumbusch LO, Liestol K, Lipson D, Nyberg S, et al. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS One 2013;8(1):e53014 10.1371/journal.pone.0053014
    1. Hurks HM, Metzelaar-Blok JA, Mulder A, Claas FH, Jager MJ. High frequency of allele-specific down-regulation of HLA class I expression in uveal melanoma cell lines. Int J Cancer 2000. March 1;85(5):697–702.
    1. Metzelaar-Blok JA, Jager MJ, Moghaddam PH, van der Slik AR, Giphart MJ. Frequent loss of heterozygosity on chromosome 6p in uveal melanoma. Hum Immunol 1999. October;60(10):962–9.
    1. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 2010. August 3;107(31):13794–9. 10.1073/pnas.1008684107
    1. Chang CH, Guerder S, Hong SC, van EW, Flavell RA. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 1996. February;4(2):167–78.
    1. Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ. Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 1997. May;6(5):601–11.
    1. Kobayashi KS, van den Elsen PJ. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 2012. December;12(12):813–20. 10.1038/nri3339
    1. Holling TM, Bergevoet MW, Wilson L, van Eggermond MC, Schooten E, Steenbergen RD, et al. A role for EZH2 in silencing of IFN-gamma inducible MHC2TA transcription in uveal melanoma. J Immunol 2007. October 15;179(8):5317–25.
    1. de Waard-Siebinga I, Creyghton WM, Kool J, Jager MJ. Effects of interferon alfa and gamma on human uveal melanoma cells in vitro. Br J Ophthalmol 1995. September;79(9):847–55.
    1. McMichael AJ. Lymphocytes. 1. Function. Genetic restrictions in the immune response. J Clin Pathol Suppl (R Coll Pathol) 1979;13:30–8.
    1. van Essen TH, Bronkhorst IH, Maat W, Verduyn W, Roelen DL, Luyten GP, et al. A comparison of HLA genotype with inflammation in uveal melanoma. Invest Ophthalmol Vis Sci 2012. May;53(6):2640–6. 10.1167/iovs.11-8901
    1. van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011;2:48 10.3389/fimmu.2011.00048
    1. McCutcheon JA, Gumperz J, Smith KD, Lutz CT, Parham P. Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA. J Exp Med 1995. June 1;181(6):2085–95.
    1. Bunce M, Welsh KI. Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP): identification of serological and non-serologically defined HLA-C alleles including several new alleles. Tissue Antigens 1994. January;43(1):7–17.
    1. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002. January 1;30(1):207–10.
    1. El Filali M, Homminga I, Maat W, van der Velden PA, Jager MJ. Triamcinolone acetonide and anecortave acetate do not stimulate uveal melanoma cell growth. Mol Vis 2008;14:1752–9.
    1. Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, Peelman LJ. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol 2005;5:27 10.1186/1471-213X-5-27
    1. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002. June 18;3(7):RESEARCH0034
    1. Seitz C, Uchanska-Ziegler B, Zank A, Ziegler A. The monoclonal antibody HCA2 recognises a broadly shared epitope on selected classical as well as several non-classical HLA class I molecules. Mol Immunol 1998. September;35(13):819–27.
    1. Stam NJ, Spits H, Ploegh HL. Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 1986. October 1;137(7):2299–306.
    1. Bronkhorst IH, Ly LV, Jordanova ES, Vrolijk J, Versluis M, Luyten GP, et al. Detection of M2-macrophages in uveal melanoma and relation with survival. Invest Ophthalmol Vis Sci 2011. February;52(2):643–50. 10.1167/iovs.10-5979
    1. Nemati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L, et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin Cancer Res 2010. April 15;16(8):2352–62. 10.1158/1078-0432.CCR-09-3066
    1. Laurent C, Gentien D, Piperno-Neumann S, Nemati F, Nicolas A, Tesson B, et al. Patient-derived xenografts recapitulate molecular features of human uveal melanomas. Mol Oncol 2013. June;7(3):625–36. 10.1016/j.molonc.2013.02.004
    1. Bengtsson H, Simpson K, Bullard J, Hansen K. aroma.affymetrix: A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory. Tech Report #745, Department of Statistics, University of California, Berkeley 2012 Feb.
    1. Bengtsson H, Irizarry R, Carvalho B, Speed TP. Estimation and assessment of raw copy numbers at the single locus level. Bioinformatics 2008. March 15;24(6):759–67. 10.1093/bioinformatics/btn016
    1. Bengtsson H, Wirapati P, Speed TP. A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6. Bioinformatics 2009. September 1;25(17):2149–56. 10.1093/bioinformatics/btp371
    1. Daniels VG, Wheater PR, Burkitt HG. Functional histology: A text and colour atlas. Edinburgh: Churchill Livingstone; 1979.
    1. Seliger B. Different regulation of MHC class I antigen processing components in human tumors. J Immunotoxicol 2008. October;5(4):361–7. 10.1080/15476910802482870
    1. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010. December 3;330(6009):1410–3. 10.1126/science.1194472
    1. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 2010. May 13;465(7295):243–7. 10.1038/nature08966
    1. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer 2013. March;13(3):153–9.
    1. LaFave LM, Beguelin W, Koche R, Teater M, Spitzer B, Chramiec A, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med 2015. November;21(11):1344–9. 10.1038/nm.3947
    1. van Essen TH, van Pelt SI, Versluis M, Bronkhorst IH, van Duinen SG, Marinkovic M, et al. Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol 2014. December;98(12):1738–43. 10.1136/bjophthalmol-2014-305047
    1. Kilic E, van GW, Lodder E, Beverloo HB, van Til ME, Mooy CM, et al. Clinical and cytogenetic analyses in uveal melanoma. Invest Ophthalmol Vis Sci 2006. September;47(9):3703–7. 10.1167/iovs.06-0101
    1. Jehs T, Faber C, Juel HB, Bronkhorst IH, Jager MJ, Nissen MH. Inflammation-induced chemokine expression in uveal melanoma cell lines stimulates monocyte chemotaxis. Invest Ophthalmol Vis Sci 2014. August;55(8):5169–75. 10.1167/iovs.14-14394
    1. Mougiakakos D, Johansson CC, Trocme E, All-Ericsson C, Economou MA, Larsson O, et al. Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer 2010. May 1;116(9):2224–33. 10.1002/cncr.24999
    1. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 2014. June 19;509(7505):407–11.
    1. Poggi A, Zocchi MR. Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp (Warsz) 2006. September;54(5):323–33.
    1. Cavallo F, De GC, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 2011. March;60(3):319–26. 10.1007/s00262-010-0968-0
    1. Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003. June;195(3):346–55. 10.1002/jcp.10290

Source: PubMed

3
Sottoscrivi