Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape

Lonneke V Nouwen, Bart Everts, Lonneke V Nouwen, Bart Everts

Abstract

Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.

Keywords: cellular metabolism; dendritic cells; immune escape; mTOR; macrophages; pathogens.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Strategies that pathogens use to directly target mTOR.
Figure 2
Figure 2
Overview of metabolic targets through which pathogens are known to modulate DC and macrophage functions. In (AD), the key strategies through which different pathogens modulate (A) amino acid metabolism, (B) lipid metabolism, (C) carbohydrate metabolism and (D) other mTOR-controlled processes in DCs and macrophages to promote immune evasion are indicated Blue = pathogens involved; Red = inhibition by pathogens; Green = stimulation by pathogens..
Figure 3
Figure 3
L-arginine is metabolized by iNOS and Arginase, creating competition between pathogen clearance and survival by modulating immune responses through the production of NO and polyamines. The dashed arrow represents a process only observed in trypanosomatid parasites.

References

    1. Wculek S.K., Khouili S.C., Priego E., Heras-Murillo I., Sancho D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Front. Immunol. 2019;10:775. doi: 10.3389/fimmu.2019.00775.
    1. O’Neill L.A.J., Pearce E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 2016;213:15–23. doi: 10.1084/jem.20151570.
    1. Cameron A.M., Lawless S.J., Pearce E.J. Metabolism and acetylation in innate immune cell function and fate. Sem. Immunol. 2016;28:408–416. doi: 10.1016/j.smim.2016.10.003.
    1. Pearce E.J., Everts B. Dendritic cell metabolism. Nat. Rev. Immunol. 2015;15:18–29. doi: 10.1038/nri3771.
    1. Finlay B.B., McFadden G. Anti-immunology: Evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124:767–782. doi: 10.1016/j.cell.2006.01.034.
    1. Collette J.R., Lorenz M.C. Mechanisms of immune evasion in fungal pathogens. Curr. Opin. Microbiol. 2011;14:668–675. doi: 10.1016/j.mib.2011.09.007.
    1. Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for “macroscopic phenomena” such as virulence. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:85–98. doi: 10.1098/rstb.2008.0157.
    1. Freyberg Z., Harvill E.T. Pathogen manipulation of host metabolism: A common strategy for immune evasion. PLoS Pathog. 2017;13:e1006669. doi: 10.1371/journal.ppat.1006669.
    1. Olive A.J., Sassetti C.M. Metabolic crosstalk between host and pathogen: Sensing, adapting and competing. Nat. Rev. Microbiol. 2016;14:221–234. doi: 10.1038/nrmicro.2016.12.
    1. Moreno-Altamirano M.M.B., Kolstoe S.E., Sánchez-García F.J. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front. Cell Infect. Microbiol. 2019;9:95. doi: 10.3389/fcimb.2019.00095.
    1. Martin S., Saha B., Riley J.L. The battle over mTOR: An emerging theatre in host-pathogen immunity. PLoS Pathog. 2012;8:e1002894. doi: 10.1371/journal.ppat.1002894.
    1. Brunton J., Steele S., Ziehr B., Moorman N., Kawula T. Feeding uninvited guests: mTOR and AMPK set the table for intracellular pathogens. PLoS Pathog. 2013;9:e1003552. doi: 10.1371/journal.ppat.1003552.
    1. Osada-Oka M., Goda N., Saiga H., Yamamoto M., Takeda K., Ozeki Y., Yamaguchi T., Soga T., Tateishi Y., Miura K., et al. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int. Immunol. 2019 doi: 10.1093/intimm/dxz048.
    1. Eisenreich W., Heesemann J., Rudel T., Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front. Cell Infect. Microbiol. 2013;3:24. doi: 10.3389/fcimb.2013.00024.
    1. Shea-Donohue T., Qin B., Smith A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 2017;39:e12422. doi: 10.1111/pim.12422.
    1. Laplante M., Sabatini D.M. mTOR Signaling in Growth Control and Disease. Cell. 2012;149:274–293. doi: 10.1016/j.cell.2012.03.017.
    1. Weichhart T., Hengstschläger M., Linke M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 2015;15:599–614. doi: 10.1038/nri3901.
    1. Liu Y., Zhang D.-T., Liu X.-G. mTOR Signaling in T Cell Immunity and Autoimmunity. Int. Rev. Immunol. 2015;34:50–66. doi: 10.3109/08830185.2014.933957.
    1. Keating R., McGargill M.A. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Front. Immunol. 2016;7:180. doi: 10.3389/fimmu.2016.00180.
    1. Guri Y., Nordmann T.M., Roszik J. mTOR at the Transmitting and Receiving Ends in Tumor Immunity. Front. Immunol. 2018;9:578. doi: 10.3389/fimmu.2018.00578.
    1. Schroeder J.H., McCarthy D., Szestak T., Cook D.A., Taylor M.J., Craig A.G., Lawson C., Lawrence R.A. Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner. PLoS Negl. Trop. Dis. 2017;11:e0005592. doi: 10.1371/journal.pntd.0005592.
    1. Narasimhan P.B., Bennuru S., Meng Z., Cotton R.N., Elliott K.R., Ganesan S., McDonald-Fleming R., Veenstra T.D., Nutman T.B., Semnani R.T. Microfilariae of Brugia malayi Inhibit the mTOR Pathway and Induce Autophagy in Human Dendritic Cells. Infect. Immun. 2016;84:2463–2472. doi: 10.1128/IAI.00174-16.
    1. Jaramillo M., Gomez M.A., Larsson O., Shio M.T., Topisirovic I., Contreras I., Luxenburg R., Rosenfeld A., Colina R., McMaster R.W., et al. Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe. 2011;9:331–341. doi: 10.1016/j.chom.2011.03.008.
    1. Clippinger A.J., Maguire T.G., Alwine J.C. Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J. Virol. 2011;85:9369–9376. doi: 10.1128/JVI.05102-11.
    1. Clippinger A.J., Alwine J.C. Dynein mediates the localization and activation of mTOR in normal and human cytomegalovirus-infected cells. Genes Dev. 2012;26:2015–2026. doi: 10.1101/gad.196147.112.
    1. Bayer C., Varani S., Wang L., Walther P., Zhou S., Straschewski S., Bachem M., Söderberg-Naucler C., Mertens T., Frascaroli G. Human cytomegalovirus infection of M1 and M2 macrophages triggers inflammation and autologous T-cell proliferation. J. Virol. 2013;87:67–79. doi: 10.1128/JVI.01585-12.
    1. Gredmark-Russ S., Söderberg-Nauclér C. Dendritic cell biology in human cytomegalovirus infection and the clinical consequences for host immunity and pathology. Virulence. 2012;3:621–634. doi: 10.4161/viru.22239.
    1. Meade N., King M., Munger J., Walsh D. mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection. J. Virol. 2019;93 doi: 10.1128/JVI.00784-19.
    1. Meade N., Furey C., Li H., Verma R., Chai Q., Rollins M.G., DiGiuseppe S., Naghavi M.H., Walsh D. Poxviruses Evade Cytosolic Sensing through Disruption of an mTORC1-mTORC2 Regulatory Circuit. Cell. 2018;174:1143–1157. doi: 10.1016/j.cell.2018.06.053.
    1. Vekariya U., Saxena R., Singh P., Rawat K., Kumar B., Kumari S., Agnihotri S.K., Kaur S., Sachan R., Nazir A., et al. HIV-1 Nef-POTEE; A novel interaction modulates macrophage dissemination via mTORC2 signaling pathway. Life Sci. 2018;214:158–166. doi: 10.1016/j.lfs.2018.10.068.
    1. Yoon B.R., Oh Y.-J., Kang S.W., Lee E.B., Lee W.-W. Role of SLC7A5 in Metabolic Reprogramming of Human Monocyte/Macrophage Immune Responses. Front. Immunol. 2018;9:53. doi: 10.3389/fimmu.2018.00053.
    1. Kimura T., Nada S., Takegahara N., Okuno T., Nojima S., Kang S., Ito D., Morimoto K., Hosokawa T., Hayama Y., et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat. Commun. 2016;7:13130. doi: 10.1038/ncomms13130.
    1. Wu G. Amino acids: Metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17. doi: 10.1007/s00726-009-0269-0.
    1. McGaha T.L., Huang L., Lemos H., Metz R., Mautino M., Prendergast G.C., Mellor A.L. Amino acid catabolism: A pivotal regulator of innate and adaptive immunity. Immunol. Rev. 2012;249:135. doi: 10.1111/j.1600-065X.2012.01149.x.
    1. Zelante T., Fallarino F., Bistoni F., Puccetti P., Romani L. Indoleamine 2,3-dioxygenase in infection: The paradox of an evasive strategy that benefits the host. Microbes Infect. 2009;11:133–141. doi: 10.1016/j.micinf.2008.10.007.
    1. Friedman M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int. J. Tryptophan Res. 2018;11:1178646918802282. doi: 10.1177/1178646918802282.
    1. Passalacqua K.D., Charbonneau M.-E., O’Riordan M.X.D. Bacterial Metabolism Shapes the Host-Pathogen Interface. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.VMBF-0027-2015.
    1. Qualls J.E., Murray P.J. Immunometabolism within the tuberculosis granuloma: Amino acids, hypoxia, and cellular respiration. Semin. Immunopathol. 2016;38:139–152. doi: 10.1007/s00281-015-0534-0.
    1. Majumdar T., Sharma S., Kumar M., Hussain M.A., Chauhan N., Kalia I., Sahu A.K., Rana V.S., Bharti R., Haldar A.K., et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161. doi: 10.1038/s41419-019-1420-9.
    1. Nino-Castro A., Abdullah Z., Popov A., Thabet Y., Beyer M., Knolle P., Domann E., Chakraborty T., Schmidt S.V., Schultze J.L. The IDO1-induced kynurenines play a major role in the antimicrobial effect of human myeloid cells against Listeria monocytogenes. Innate Immune. 2014;20:401–411. doi: 10.1177/1753425913496442.
    1. Zhang Y.J., Reddy M.C., Ioerger T.R., Rothchild A.C., Dartois V., Schuster B.M., Trauner A., Wallis D., Galaviz S., Huttenhower C., et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell. 2013;155:1296–1308. doi: 10.1016/j.cell.2013.10.045.
    1. Munn D.H., Mellor A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–143. doi: 10.1016/j.it.2012.10.001.
    1. Mellor A.L., Munn D.H. Ido expression by dendritic cells: Tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004;4:762–774. doi: 10.1038/nri1457.
    1. Wang X.F., Wang H.S., Wang H., Zhang F., Wang K.F., Guo Q., Zhang G., Cai S.H., Du J. The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: Focus on macrophage polarization of THP-1 cells. Cell Immunol. 2014;289:42–48. doi: 10.1016/j.cellimm.2014.02.005.
    1. Poormasjedi-Meibod M.-S., Jalili R.B., Hosseini-Tabatabaei A., Hartwell R., Ghahary A. Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses. PLoS ONE. 2013;8:e71044. doi: 10.1371/journal.pone.0071044.
    1. Pallotta M.T., Orabona C., Volpi C., Vacca C., Belladonna M.L., Bianchi R., Servillo G., Brunacci C., Calvitti M., Bicciato S., et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 2011;12:870–878. doi: 10.1038/ni.2077.
    1. Avdic S., McSharry B.P., Slobedman B. Modulation of dendritic cell functions by viral IL-10 encoded by human cytomegalovirus. Front. Microbiol. 2014;5:337. doi: 10.3389/fmicb.2014.00337.
    1. Raftery M.J., Wieland D., Gronewald S., Kraus A.A., Giese T., Schönrich G. Shaping Phenotype, Function, and Survival of Dendritic Cells by Cytomegalovirus-Encoded IL-10. J. Immunol. 2004;173:3383–3391. doi: 10.4049/jimmunol.173.5.3383.
    1. Mittal D., Kassianos A.J., Tran L.S., Bergot A.S., Gosmann C., Hofmann J., Blumenthal A., Leggatt G.R., Frazer I.H. Indoleamine 2,3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J. Investig Dermatol. 2013;133:2686–2694. doi: 10.1038/jid.2013.222.
    1. Metz R., Rust S., DuHadaway J.B., Mautino M.R., Munn D.H., Vahanian N.N., Link C.J., Prendergast G.C. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1:1460–1468. doi: 10.4161/onci.21716.
    1. Battu S., Minhas G., Mishra A., Khan N. Amino Acid Sensing via General Control Nonderepressible-2 Kinase and Immunological Programming. Front. Immunol. 2017;8 doi: 10.3389/fimmu.2017.01719.
    1. Castilho B.A., Shanmugam R., Silva R.C., Ramesh R., Himme B.M., Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta. 2014;1843:1948–1968. doi: 10.1016/j.bbamcr.2014.04.006.
    1. Tattoli I., Sorbara M.T., Vuckovic D., Ling A., Soares F., Carneiro L.A., Yang C., Emili A., Philpott D.J., Girardin S.E. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe. 2012;11:563–575. doi: 10.1016/j.chom.2012.04.012.
    1. Ravishankar B., Liu H., Shinde R., Chaudhary K., Xiao W., Bradley J., Koritzinsky M., Madaio M.P., McGaha T.L. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc. Natl. Acad. Sci. USA. 2015;112:10774–10779. doi: 10.1073/pnas.1504276112.
    1. Perl A., Hanczko R., Lai Z.W., Oaks Z., Kelly R., Borsuk R., Asara J.M., Phillips P.E. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: Implications for activation of the mechanistic target of rapamycin. Metabolomics. 2015;11:1157–1174. doi: 10.1007/s11306-015-0772-0.
    1. Osawa Y., Kanamori H., Seki E., Hoshi M., Ohtaki H., Yasuda Y., Ito H., Suetsugu A., Nagaki M., Moriwaki H., et al. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J. Biol. Chem. 2011;286:34800–34808. doi: 10.1074/jbc.M111.235473.
    1. Nguyen N.T., Kimura A., Nakahama T., Chinen I., Masuda K., Nohara K., Fujii-Kuriyama Y., Kishimoto T. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. USA. 2010;107:19961–19966. doi: 10.1073/pnas.1014465107.
    1. Mezrich J.D., Fechner J.H., Zhang X., Johnson B.P., Burlingham W.J., Bradfield C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 2010;185:3190–3198. doi: 10.4049/jimmunol.0903670.
    1. Sorgdrager F.J.H., Naudé P.J.W., Kema I.P., Nollen E.A., Deyn P.P.D. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Front. Immunol. 2019;10:2565. doi: 10.3389/fimmu.2019.02565.
    1. Uchiya K.-I., Groisman E.A., Nikai T. Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages: Role of protein kinase A signal pathway. Infect. Immun. 2004;72:1964–1973. doi: 10.1128/IAI.72.4.1964-1973.2004.
    1. Tsalikis J., Croitoru D.O., Philpott D.J., Girardin S.E. Nutrient sensing and metabolic stress pathways in innate immunity. Cell Microbiol. 2013;15:1632–1641. doi: 10.1111/cmi.12165.
    1. McRae M.P. Therapeutic Benefits of l-Arginine: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2016;15:184. doi: 10.1016/j.jcm.2016.06.002.
    1. Popovic P.J., Zeh H.J., 3rd, Ochoa J.B. Arginine and immunity. J Nutr. 2007;137:1681S–1686S. doi: 10.1093/jn/137.6.1681S.
    1. Fang F.C. Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Investig. 1997;99:2818–2825. doi: 10.1172/JCI119473.
    1. Das P., Lahiri A., Lahiri A., Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6:e1000899. doi: 10.1371/journal.ppat.1000899.
    1. Gogoi M., Datey A., Wilson K.T., Chakravortty D. Dual role of arginine metabolism in establishing pathogenesis. Curr. Opin. Microbiol. 2016;29:43–48. doi: 10.1016/j.mib.2015.10.005.
    1. El Kasmi K.C., Qualls J.E., Pesce J.T., Smith A.M., Thompson R.W., Henao-Tamayo M., Basaraba R.J., König T., Schleicher U., Koo M.S., et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 2008;9:1399–1406. doi: 10.1038/ni.1671.
    1. Holzmuller P., Geiger A., Nzoumbou-Boko R., Pissarra J., Hamrouni S., Rodrigues V., Dauchy F.A., Lemesre J.L., Vincendeau P., Bras-Gonçalves R. Trypanosomatid Infections: How Do Parasites and Their Excreted–Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages? Front. Immunol. 2018;9:778. doi: 10.3389/fimmu.2018.00778.
    1. Kropf P., Fuentes J.M., Fähnrich E., Arpa L., Herath S., Weber V., Soler G., Celada A., Modolell M., Müller I. Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J. 2005;19:1000–1002. doi: 10.1096/fj.04-3416fje.
    1. Duque-Correa M.A., Kühl A.A., Rodriguez P.C., Zedler U., Schommer-Leitner S., Rao M., Weiner J., Hurwitz R., Qualls J.E., Kosmiadi G.A., et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc. Natl. Acad. Sci. USA. 2014;111:E4024–E4032. doi: 10.1073/pnas.1408839111.
    1. Badirzadeh A., Taheri T., Taslimi Y., Abdossamadi Z., Heidari-Kharaji M., Gholami E., Sedaghat B., Niyyati M., Rafati S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl. Trop. Dis. 2017;11:e0005774. doi: 10.1371/journal.pntd.0005774.
    1. da Silva M.F.L., Floeter-Winter L.M. Arginase in Leishmania. Subcell. Biochem. 2014;74:103–117. doi: 10.1007/978-94-007-7305-9_4.
    1. Boitz J.M., Gilroy C.A., Olenyik T.D., Paradis D., Perdeh J., Dearman K., Davis M.J., Yates P.A., Li Y., Riscoe M.K., et al. Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes. Infect. Immun. 2017;85:e00554-16. doi: 10.1128/IAI.00554-16.
    1. Gobert A.P., McGee D.J., Akhtar M., Mendz G.L., Newton J.C., Cheng Y., Mobley H.L., Wilson K.T. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci. USA. 2001;98:13844–13849. doi: 10.1073/pnas.241443798.
    1. Chaturvedi R., Asim M., Lewis N.D., Algood H.M., Cover T.L., Kim P.Y., Wilson K.T. L-Arginine Availability Regulates Inducible Nitric Oxide Synthase-Dependent Host Defense against Helicobacter pylori. Infect. Immun. 2007;75:4305–4315. doi: 10.1128/IAI.00578-07.
    1. Jiménez-López C., Collette J.R., Brothers K.M., Shepardson K.M., Cramer R.A., Wheeler R.T., Lorenz M.C. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot. Cell. 2013;12:91–100. doi: 10.1128/EC.00290-12.
    1. Puleston D.J., Buck M.D., Geltink R.I., Kyle R.L., Caputa G., O’Sullivan D., Cameron A.M., Castoldi A., Musa Y., Kabat A.M., et al. Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metab. 2019;30:352–363.e8. doi: 10.1016/j.cmet.2019.05.003.
    1. Raniga K., Liang C. Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses. 2018;10:36. doi: 10.3390/v10010036.
    1. Goh C.C., Roggerson K.M., Lee H.-C., Golden-Mason L., Rosen H.R., Hahn Y.S. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1. J. Immunol. 2016;196:2283–2292. doi: 10.4049/jimmunol.1501881.
    1. Banik S., Renner Viveros P., Seeber F., Klotz C., Ignatius R., Aebischer T. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia. Infect. Immun. 2013;81:2309–2317. doi: 10.1128/IAI.00004-13.
    1. Ban H., Shigemitsu K., Yamatsuji T., Haisa M., Nakajo T., Takaoka M., Nobuhisa T., Gunduz M., Tanaka N., Naomoto Y. Arginine and Leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int. J. Mol. Med. 2004;13:537–543. doi: 10.3892/ijmm.13.4.537.
    1. Chantranupong L., Scaria S.M., Saxton R.A., Gygi M.P., Shen K., Wyant G.A., Wang T., Harper J.W., Gygi S.P., Sabatini D.M. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell. 2016;165:153–164. doi: 10.1016/j.cell.2016.02.035.
    1. Bar-Peled L., Sabatini D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003.
    1. Averous J., Lambert-Langlais S., Mesclon F., Carraro V., Parry L., Jousse C., Bruhat A., Maurin A.C., Pierre P., Proud C.G., et al. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci. Rep. 2016;6:27698. doi: 10.1038/srep27698.
    1. Fletcher M., Ramirez M.E., Sierra R.A., Raber P., Thevenot P., Al-Khami A.A., Sanchez-Pino D., Hernandez C., Wyczechowska D.D., Ochoa A.C., et al. l-Arginine Depletion Blunts Antitumor T-cell Responses by Inducing Myeloid-Derived Suppressor Cells. Cancer Res. 2015;75:275–283. doi: 10.1158/0008-5472.CAN-14-1491.
    1. Shaheen Z.R., Naatz A., Corbett J.A. CCR5-Dependent Activation of mTORC1 Regulates Translation of Inducible NO Synthase and COX-2 during Encephalomyocarditis Virus Infection. J. Immunol. 2015;195:4406–4414. doi: 10.4049/jimmunol.1500704.
    1. Everts B., Amiel E., Huang S.C., Smith A.M., Chang C.H., Lam W.Y., Redmann V., Freitas T.C., Blagih J., Van Der Windt G.J., et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 2014;15:323–332. doi: 10.1038/ni.2833.
    1. Kullas A.L., McClelland M., Yang H.J., Tam J.W., Torres A., Porwollik S., Mena P., McPhee J.B., Bogomolnaya L., Andrews-Polymenis H., et al. L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe. 2012;12:791–798. doi: 10.1016/j.chom.2012.10.018.
    1. Shibayama K., Takeuchi H., Wachino J.-I., Mori S., Arakawa Y. Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiol. Immunol. 2011;55:408–417. doi: 10.1111/j.1348-0421.2011.00333.x.
    1. Torres A., Luke J.D., Kullas A.L., Kapilashrami K., Botbol Y., Koller A., Tonge P.J., Chen E.I., Macian F., van der Velden A.W. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming. J. Leukoc. Biol. 2016;99:387–398. doi: 10.1189/jlb.4A0615-252R.
    1. Cachumba J.J.M., Antunes F.A.F., Peres G.F.D., Brumano L.P., Santos J.C.D., Da Silva S.S. Current applications and different approaches for microbial l-asparaginase production. Braz. J. Microbiol. 2016;47:77–85. doi: 10.1016/j.bjm.2016.10.004.
    1. Hofreuter D., Novik V., Galán J.E. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe. 2008;4:425–433. doi: 10.1016/j.chom.2008.10.002.
    1. Song P., Wang Z., Zhang X., Fan J., Li Y., Chen Q., Wang S., Liu P., Luan J., Ye L., et al. The role of autophagy in asparaginase-induced immune suppression of macrophages. Cell Death Dis. 2017;8:e2721. doi: 10.1038/cddis.2017.144.
    1. Rabinovich S., Adler L., Yizhak K., Sarver A., Silberman A., Agron S., Stettner N., Sun Q., Brandis A., Helbling D., et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature. 2015;527:379–383. doi: 10.1038/nature15529.
    1. Cruzat V., Macedo Rogero M., Noel Keane K., Curi R., Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10:1564. doi: 10.3390/nu10111564.
    1. Stunault M.I., Bories G., Guinamard R.R., Ivanov S. Metabolism Plays a Key Role during Macrophage Activation. Mediat. Inflamm. 2018;2018:1–10. doi: 10.1155/2018/2426138.
    1. Tattoli I., Philpott D.J., Girardin S.E. The bacterial and cellular determinants controlling the recruitment of mTOR to the Salmonella-containing vacuole. Biol. Open. 2012;1:1215–1225. doi: 10.1242/bio.20122840.
    1. Ganesan R., Hos N.J., Gutierrez S., Fischer J., Stepek J.M., Daglidu E., Krönke M., Robinson N. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227. doi: 10.1371/journal.ppat.1006227.
    1. Kudchodkar S.B., Del Prete G.Q., Maguire T.G., Alwine J.C. AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection. J. Virol. 2007;81:3649–3651. doi: 10.1128/JVI.02079-06.
    1. Kudchodkar S.B., Yu Y., Maguire T.G., Alwine J.C. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J. Virol. 2004;78:11030–11039. doi: 10.1128/JVI.78.20.11030-11039.2004.
    1. Laplante M., Sabatini D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 2009;19:R1046–R1052. doi: 10.1016/j.cub.2009.09.058.
    1. Guerrini V., Prideaux B., Blanc L., Bruiners N., Arrigucci R., Singh S., Ho-Liang H.P., Salamon H., Chen P.Y., Lakehal K., et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog. 2018;14:e1007223. doi: 10.1371/journal.ppat.1007223.
    1. den Brok M.H., Raaijmakers T.K., Collado-Camps E., Adema G.J. Lipid Droplets as Immune Modulators in Myeloid Cells. Trends Immunol. 2018;39:380–392. doi: 10.1016/j.it.2018.01.012.
    1. Saka H.A., Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu. Rev. Cell Dev. Biol. 2012;28:411–437. doi: 10.1146/annurev-cellbio-092910-153958.
    1. Wilson S.K., Knoll L.J. Patatin-like phospholipases in microbial infections with emerging roles in fatty acid metabolism and immune regulation by Apicomplexa. Mol. Microbiol. 2018;107:34–46. doi: 10.1111/mmi.13871.
    1. D’Avila H., Freire-de-Lima C.G., Roque N.R., Teixeira L., Barja-Fidalgo C., Silva A.R., Melo R.C., DosReis G.A., Castro-Faria-Neto H.C., Bozza P.T. Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E₂ generation and increased parasite growth. J. Infect. Dis. 2011;204:951–961. doi: 10.1093/infdis/jir432.
    1. Steer S.A., Corbett J.A. The Role and Regulation of COX-2 during Viral Infection. Viral Immunol. 2003;16:447–460. doi: 10.1089/088282403771926283.
    1. Sander W.J., O’Neill H.G., Pohl C.H. Prostaglandin E2 as a Modulator of Viral Infections. Front. Physiol. 2017;8 doi: 10.3389/fphys.2017.00089.
    1. Vallochi A.L., Teixeira L., Oliveira K da S., Maya-Monteiro C.M., Bozza P.T. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front. Immunol. 2018;9:1022. doi: 10.3389/fimmu.2018.01022.
    1. Libbing C.L., McDevitt A.R., Azcueta R.-M.P., Ahila A., Mulye M. Lipid Droplets: A Significant but Understudied Contributor of Host–Bacterial Interactions. Cells. 2019;8:354. doi: 10.3390/cells8040354.
    1. Agard M., Asakrah S., Morici L.A. PGE (2) suppression of innate immunity during mucosal bacterial infection. Front. Cell Infect. Microbiol. 2013;3:45. doi: 10.3389/fcimb.2013.00045.
    1. Bozza P.T., Payne J.L., Morham S.G., Langenbach R., Smithies O., Weller P.F. Leukocyte lipid body formation and eicosanoid generation: Cyclooxygenase-independent inhibition by aspirin. Proc. Natl. Acad. Sci. USA. 1996;93:11091–11096. doi: 10.1073/pnas.93.20.11091.
    1. Raulin J. Lipids and retroviruses. Lipids. 2000;35:123–130. doi: 10.1007/BF02664760.
    1. Mattos K.A., Oliveira V.G., D’Avila H., Rodrigues L.S., Pinheiro R.O., Sarno E.N., Pessolani M.C., Bozza P.T. TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: Immunoinflammatory platforms associated with bacterial persistence. J. Immunol. 2011;187:2548–2558. doi: 10.4049/jimmunol.1101344.
    1. Rodríguez-Sánchez I., Munger J. Meal for Two: Human Cytomegalovirus-Induced Activation of Cellular Metabolism. Viruses. 2019;11:273. doi: 10.3390/v11030273.
    1. Foley P., Kazazi F., Biti R., Sorrell T.C., Cunningham A.L. HIV infection of monocytes inhibits the T-lymphocyte proliferative response to recall antigens, via production of eicosanoids. Immunology. 1992;75:391–397.
    1. Castellano P., Prevedel L., Valdebenito S., Eugenin E.A. HIV infection and latency induce a unique metabolic signature in human macrophages. Sci. Rep. 2019;9:3941. doi: 10.1038/s41598-019-39898-5.
    1. Yu Y., Maguire T.G., Alwine J.C. Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1. J. Virol. 2012;86:2942–2949. doi: 10.1128/JVI.06467-11.
    1. Bowman C.C., Bost K.L. Cyclooxygenase-2-mediated prostaglandin E2 production in mesenteric lymph nodes and in cultured macrophages and dendritic cells after infection with Salmonella. J. Immunol. 2004;172:2469–2475. doi: 10.4049/jimmunol.172.4.2469.
    1. Chakraborty T., Thuer E., Heijink M., Tóth R., Bodai L., Vágvölgyi C., Giera M., Gabaldón T., Gácser A. Eicosanoid biosynthesis influences the virulence of Candida parapsilosis. Virulence. 2018;9:1019–1035. doi: 10.1080/21505594.2018.1475797.
    1. Murphy D.J. The dynamic roles of intracellular lipid droplets: From archaea to mammals. Protoplasma. 2012;249:541–585. doi: 10.1007/s00709-011-0329-7.
    1. Singh A., Del Poeta M. Lipid signalling in pathogenic fungi. Cell. Microbiol. 2011;13:177–185. doi: 10.1111/j.1462-5822.2010.01550.x.
    1. Crawford S.E., Desselberger U. Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr. Opin. Virol. 2016;19:11–15. doi: 10.1016/j.coviro.2016.05.008.
    1. Leier H.C., Messer W.B., Tafesse F.G. Lipids and pathogenic flaviviruses: An intimate union. PLoS Pathog. 2018;14:e1006952. doi: 10.1371/journal.ppat.1006952.
    1. Jordan T.X., Randall G. Dengue Virus Activates the AMP Kinase-mTOR Axis to Stimulate a Proviral Lipophagy. J. Virol. 2017;91 doi: 10.1128/JVI.02020-16.
    1. Hu X., Binns D., Reese M.L. The coccidian parasites and dysregulate mammalian lipid droplet biogenesis. J. Biol. Chem. 2017;292:11009–11020. doi: 10.1074/jbc.M116.768176.
    1. Fernández N., González A., Valera I., Alonso S., Crespo M.S. Mannan and peptidoglycan induce COX-2 protein in human PMN via the mammalian target of rapamycin. Eur. J. Immunol. 2007;37:2572–2582. doi: 10.1002/eji.200737262.
    1. Olzmann J.A., Carvalho P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019;20:137–155. doi: 10.1038/s41580-018-0085-z.
    1. Pinheiro R.O., Nunes M.P., Pinheiro C.S., D’Avila H., Bozza P.T., Takiya C.M., Côrte-Real S., Freire-de-Lima C.G., DosReis G.A. Induction of autophagy correlates with increased parasite load of Leishmania amazonensis in BALB/c but not C57BL/6 macrophages. Microbes Infect. 2009;11:181–190. doi: 10.1016/j.micinf.2008.11.006.
    1. Madeira J.B., Masuda C.A., Maya-Monteiro C.M., Matos G.S., Montero-Lomelí M., Bozaquel-Morais B.L. TORC1 inhibition induces lipid droplet replenishment in yeast. Mol. Cell Biol. 2015;35:737–746. doi: 10.1128/MCB.01314-14.
    1. Menon D., Singh K., Pinto S.M., Nandy A., Jaisinghani N., Kutum R., Dash D., Prasad T.K., Gandotra S. Quantitative Lipid Droplet Proteomics Reveals Mycobacterium tuberculosis Induced Alterations in Macrophage Response to Infection. ACS Infect. Dis. 2019;5:559–569. doi: 10.1021/acsinfecdis.8b00301.
    1. Mattos K.A., Lara F.A., Oliveira V.G., Rodrigues L.S., D’Avila H., Melo R.C., Manso P.P., Sarno E.N., Bozza P.T., Pessolani M.C. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: A putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol. 2011;13:259–273. doi: 10.1111/j.1462-5822.2010.01533.x.
    1. Schumann J. The Impact of Macrophage Membrane Lipid Composition on Innate Immune Response Mechanisms. IntechOpen; Rijeka, Croatia: 2012.
    1. Olsson S., Sundler R. The role of lipid rafts in LPS-induced signaling in a macrophage cell line. Mol. Immunol. 2006;43:607–612. doi: 10.1016/j.molimm.2005.04.011.
    1. Mackenzie J.M., Khromykh A.A., Parton R.G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe. 2007;2:229–239. doi: 10.1016/j.chom.2007.09.003.
    1. Rub A., Dey R., Jadhav M., Kamat R., Chakkaramakkil S., Majumdar S., Mukhopadhyaya R., Saha B. Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat. Immunol. 2009;10:273–280. doi: 10.1038/ni.1705.
    1. Linares J.F., Duran A., Yajima T., Pasparakis M., Moscat J., Diaz-Meco M.T. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell. 2013;51:283–296. doi: 10.1016/j.molcel.2013.06.020.
    1. Yin H., Zhou H., Kang Y., Zhang X., Duan X., Alnabhan R., Liang S., Scott D.A., Lamont R.J., Shang J., et al. Syk negatively regulates TLR4-mediated IFNβ and IL-10 production and promotes inflammatory responses in dendritic cells. Biochim. Biophys. Acta. 2016;1860:588–598. doi: 10.1016/j.bbagen.2015.12.012.
    1. Castellano B.M., Thelen A.M., Moldavski O., Feltes M., Van Der Welle R.E., Mydock-McGrane L., Jiang X., Van Eijkeren R.J., Davis O.B., Louie S.M., et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355:1306–1311. doi: 10.1126/science.aag1417.
    1. Ganeshan K., Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014;32:609–634. doi: 10.1146/annurev-immunol-032713-120236.
    1. Loftus R.M., Finlay D.K. Immunometabolism: Cellular Metabolism Turns Immune Regulator. J. Biol. Chem. 2016;291:1–10. doi: 10.1074/jbc.R115.693903.
    1. Kelly B., O’Neill L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–784. doi: 10.1038/cr.2015.68.
    1. Wyatt E.V., Diaz K., Griffin A.J., Rasmussen J.A., Crane D.D., Jones B.D., Bosio C.M. Metabolic Reprogramming of Host Cells by Virulent Francisella tularensis for Optimal Replication and Modulation of Inflammation. J. Immunol. 2016;196:4227–4236. doi: 10.4049/jimmunol.1502456.
    1. Sanman L.E., Qian Y., Eisele N.A., Ng T.M., van der Linden W.A., Monack D.M., Weerapana E., Bogyo M. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. Elife. 2016;5:e13663. doi: 10.7554/eLife.13663.
    1. Wynosky-Dolfi M.A., Snyder A.G., Philip N.H., Doonan P.J., Poffenberger M.C., Avizonis D., Zwack E.E., Riblett A.M., Hu B., Strowig T., et al. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J. Exp. Med. 2014;211:653–668. doi: 10.1084/jem.20130627.
    1. Tucey T.M., Verma J., Harrison P.F., Snelgrove S.L., Lo T.L., Scherer A.K., Barugahare A.A., Powell D.R., Wheeler R.T., Hickey M.J., et al. Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metab. 2018;27:988–1006. doi: 10.1016/j.cmet.2018.03.019.
    1. Moreira D., Rodrigues V., Abengozar M., Rivas L., Rial E., Laforge M., Li X., Foretz M., Viollet B., Estaquier J., et al. Leishmania infantum modulates host macrophage mitochondrial metabolism by hijacking the SIRT1-AMPK axis. PLoS Pathog. 2015;11:e1004684. doi: 10.1371/journal.ppat.1004684.
    1. Sag D., Carling D., Stout R.D., Suttles J. Adenosine 5′-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype. J. Immunol. 2008;181:8633–8641. doi: 10.4049/jimmunol.181.12.8633.
    1. Escoll P., Song O.R., Viana F., Steiner B., Lagache T., Olivo-Marin J.C., Impens F., Brodin P., Hilbi H., Buchrieser C. Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe. 2017;22:302–316. doi: 10.1016/j.chom.2017.07.020.
    1. Abshire C.F., Dragoi A.-M., Roy C.R., Ivanov S.S. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathog. 2016;12:e1006088. doi: 10.1371/journal.ppat.1006088.
    1. Ivanov S. The tug-of-war over MTOR in Legionella infections. Microb. Cell. 2017;4:67–68. doi: 10.15698/mic2017.02.559.
    1. Prevost M.S., Pinotsis N., Dumoux M., Hayward R.D., Waksman G. The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci. Rep. 2017;7:9450. doi: 10.1038/s41598-017-10249-6.
    1. Ravanan P., Srikumar I.F., Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci. 2017;188:53–67. doi: 10.1016/j.lfs.2017.08.029.
    1. Gurney M., Muralidhar G., Linton P.-J. Autophagy in the Immune System. Autophagy Health Dis. 2013;30:41–55. doi: 10.1016/b978-0-12-385101-7.00004-8.
    1. Jung C.H., Ro S.-H., Cao J., Otto N.M., Kim D.-H. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287–1295. doi: 10.1016/j.febslet.2010.01.017.
    1. Tattoli I., Sorbara M.T., Yang C., Tooze S.A., Philpott D.J., Girardin S.E. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J. 2013;32:3066–3078. doi: 10.1038/emboj.2013.234.
    1. Abdel-Nour M., Tsalikis J., Kleinman D., Girardin S.E. The emerging role of mTOR signalling in antibacterial immunity. Immunol. Cell Biol. 2014;92:346–353. doi: 10.1038/icb.2014.3.
    1. Choy A., Dancourt J., Mugo B., O’Connor T.J., Isberg R.R., Melia T.J., Roy C.R. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 2012;338:1072–1076. doi: 10.1126/science.1227026.
    1. Casanova J.E. Bacterial Autophagy: Offense and Defense at the Host–Pathogen Interface. Cell. Mol. Gastroenterol. Hepatol. 2017;4:237–243. doi: 10.1016/j.jcmgh.2017.05.002.
    1. Le Sage V., Cinti A., Amorim R., Mouland A.J. Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway. Viruses. 2016;8 doi: 10.3390/v8060152.
    1. Buchkovich N.J., Yu Y., Zampieri C.A., Alwine J.C. The TORrid affairs of viruses: Effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway. Nat. Rev. Microbiol. 2008;6:266–275. doi: 10.1038/nrmicro1855.
    1. Li N., Tang B., Jia Y.P., Zhu P., Zhuang Y., Fang Y., Li Q., Wang K., Zhang W.J., Guo G., et al. Helicobacter pylori CagA Protein Negatively Regulates Autophagy and Promotes Inflammatory Response via c-Met-PI3K/Akt-mTOR Signaling Pathway. Front. Cell. Infect. Microbiol. 2017;7 doi: 10.3389/fcimb.2017.00417.
    1. McLean J.E., Wudzinska A., Datan E., Quaglino D., Zakeri Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J. Biol. Chem. 2011;286:22147–22159. doi: 10.1074/jbc.M110.192500.
    1. Liang Q., Luo Z., Zeng J., Chen W., Foo S.S., Lee S.A., Ge J., Wang S., Goldman S.A., Zlokovic B.V., et al. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell. 2016;19:663–671. doi: 10.1016/j.stem.2016.07.019.
    1. Zhou Y., Geng P., Liu Y., Wu J., Qiao H., Xie Y., Yin N., Chen L., Lin X., Liu Y., et al. Rotavirus-encoded virus-like small RNA triggers autophagy by targeting IGF1R via the PI3K/Akt/mTOR pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:60–68. doi: 10.1016/j.bbadis.2017.09.028.
    1. Shi Y., He X., Zhu G., Tu H., Liu Z., Li W., Han S., Yin J., Peng B., Liu W. Coxsackievirus A16 elicits incomplete autophagy involving the mTOR and ERK pathways. PLoS ONE. 2015;10:e0122109. doi: 10.1371/journal.pone.0122109.
    1. Wang Y., Weiss L.M., Orlofsky A. Host Cell Autophagy Is Induced by Toxoplasma gondii and Contributes to Parasite Growth. J. Biol. Chem. 2009;284:1694. doi: 10.1074/jbc.M807890200.
    1. Wang Y., Weiss L.M., Orlofsky A. Intracellular parasitism with Toxoplasma gondii stimulates mTOR-dependent host cell growth despite impaired signaling to S6K1 and 4E-BP1. Cell Microbiol. 2009;11:983. doi: 10.1111/j.1462-5822.2009.01305.x.
    1. Thomas S.A., Nandan D., Kass J., Reiner N.E. Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania. J. Biol. Chem. 2018;293:2617–2630. doi: 10.1074/jbc.M117.808675.
    1. Blanchet F.P., Moris A., Nikolic D.S., Lehmann M., Cardinaud S., Stalder R., Garcia E., Dinkins C., Leuba F., Wu L., et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity. 2010;32:654–669. doi: 10.1016/j.immuni.2010.04.011.
    1. Nardacci R., Ciccosanti F., Marsella C., Ippolito G., Piacentini M., Fimia G.M. Role of autophagy in HIV infection and pathogenesis. J. Intern. Med. 2017;281:422–432. doi: 10.1111/joim.12596.
    1. Alwine J.C. Modulation of host cell stress responses by human cytomegalovirus. Curr. Top. Microbiol. Immunol. 2008;325:263–279. doi: 10.1007/978-3-540-77349-8_15.
    1. Shives K.D., Massey A.R., May N.A., Morrison T.E., Beckham J.D. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression. Viruses. 2016;8:287. doi: 10.3390/v8100287.
    1. Joubert P.-E., Stapleford K., Guivel-Benhassine F., Vignuzzi M., Schwartz O., Albert M.L. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway. PLoS Pathog. 2015;11:e1005091. doi: 10.1371/journal.ppat.1005091.
    1. Shives K.D., Beatman E.L., Chamanian M., O’Brien C., Hobson-Peters J., Beckham J.D. West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J. Virol. 2014;88:9458–9471. doi: 10.1128/JVI.01323-14.
    1. De Leon J.A., Qiu J., Nicolai C.J., Counihan J.L., Barry K.C., Xu L., Lawrence R.E., Castellano B.M., Zoncu R., Nomura D.K., et al. Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 2017;21:2031–2038. doi: 10.1016/j.celrep.2017.10.088.
    1. Leroux L.P., Lorent J., Graber T.E., Chaparro V., Masvidal L., Aguirre M., Fonseca B.D., van Kempen L.C., Alain T., Larsson O., et al. The Protozoan Parasite Toxoplasma gondii Selectively Reprograms the Host Cell Translatome. Infect. Immun. 2018;86 doi: 10.1128/IAI.00244-18.
    1. Pernas L., Adomako-Ankomah Y., Shastri A.J., Ewald S.E., Treeck M., Boyle J.P., Boothroyd J.C. Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol. 2014;12:e1001845. doi: 10.1371/journal.pbio.1001845.
    1. Suzutani T., Nagamine M., Shibaki T., Ogasawara M., Yoshida I., Daikoku T., Nishiyama Y., Azuma M. The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J. Gen. Virol. 2000;81:1763–1771. doi: 10.1099/0022-1317-81-7-1763.
    1. Shi G., Ozog S., Torbett B.E., Compton A.A. mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc. Natl. Acad. Sci. USA. 2018;115:E10069–E10078. doi: 10.1073/pnas.1811892115.
    1. Beretta L., Gingras A.C., Svitkin Y.V., Hall M.N., Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15:658–664. doi: 10.1002/j.1460-2075.1996.tb00398.x.
    1. Li Y., Fang L., Zhou Y., Tao R., Wang D., Xiao S. Porcine Reproductive and Respiratory Syndrome Virus Infection Induces both eIF2α Phosphorylation-Dependent and -Independent Host Translation Shutoff. J. Virol. 2018;92 doi: 10.1128/JVI.00600-18.
    1. Luo Q., Zhang L., Wei F., Fang Q., Bao F., Mi S., Li N., Wang C., Liu Y., Tu C. mTORC1 Negatively Regulates the Replication of Classical Swine Fever Virus Through Autophagy and IRES-Dependent Translation. iScience. 2018;3:87–101. doi: 10.1016/j.isci.2018.04.010.
    1. Katholnig K., Linke M., Pham H., Hengstschläger M., Weichhart T. Immune responses of macrophages and dendritic cells regulated by mTOR signalling. Biochem. Soc. Trans. 2013;41:927–933. doi: 10.1042/BST20130032.
    1. Peres A.G., Stegen C., Li J., Xu A.Q., Levast B., Surette M.G., Cousineau B., Desrosiers M., Madrenas J. Uncoupling of pro- and anti-inflammatory properties of Staphylococcus aureus. Infect. Immun. 2015;83:1587–1597. doi: 10.1128/IAI.02832-14.
    1. Cheekatla S.S., Aggarwal A., Naik S. mTOR signaling pathway regulates the IL-12/IL-10 axis in Leishmania donovani infection. Med. Microbiol. Immunol. 2012;201:37–46. doi: 10.1007/s00430-011-0202-5.
    1. Foldenauer M.E.B., McClellan S.A., Berger E.A., Hazlett L.D. Mammalian target of rapamycin regulates IL-10 and resistance to Pseudomonas aeruginosa corneal infection. J. Immunol. 2013;190:5649–5658. doi: 10.4049/jimmunol.1203094.
    1. Araki K., Turner A.P., Shaffer V.O., Gangappa S., Keller S.A., Bachmann M.F., Larsen C.P., Ahmed R. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108–112. doi: 10.1038/nature08155.
    1. Lai Z.W., Kelly R., Winans T., Marchena I., Shadakshari A., Yu J., Dawood M., Garcia R., Tily H., Francis L., et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: A single-arm, open-label, phase 1/2 trial. Lancet. 2018;391:1186–1196. doi: 10.1016/S0140-6736(18)30485-9.
    1. Fajgenbaum D.C., Langan R.A., Japp A.S., Partridge H.L., Pierson S.K., Singh A., Arenas D.J., Ruth J.R., Nabel C.S., Stone K., et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade-refractory idiopathic multicentric Castleman disease. J. Clin. Investig. 2019;130:4451–4463. doi: 10.1172/JCI126091.

Source: PubMed

3
Sottoscrivi