Congenital Athymia: Genetic Etiologies, Clinical Manifestations, Diagnosis, and Treatment

Cathleen Collins, Emily Sharpe, Abigail Silber, Sarah Kulke, Elena W Y Hsieh, Cathleen Collins, Emily Sharpe, Abigail Silber, Sarah Kulke, Elena W Y Hsieh

Abstract

Congenital athymia is an ultra-rare disease characterized by the absence of a functioning thymus. It is associated with several genetic and syndromic disorders including FOXN1 deficiency, 22q11.2 deletion, CHARGE Syndrome (Coloboma, Heart defects, Atresia of the nasal choanae, Retardation of growth and development, Genitourinary anomalies, and Ear anomalies), and Complete DiGeorge Syndrome. Congenital athymia can result from defects in genes that impact thymic organ development such as FOXN1 and PAX1 or from genes that are involved in development of the entire midline region, such as TBX1 within the 22q11.2 region, CHD7, and FOXI3. Patients with congenital athymia have profound immunodeficiency, increased susceptibility to infections, and frequently, autologous graft-versus-host disease (GVHD). Athymic patients often present with absent T cells but normal numbers of B cells and Natural Killer cells (T-B+NK+), similar to a phenotype of severe combined immunodeficiency (SCID); these patients may require additional steps to confirm the diagnosis if no known genetic cause of athymia is identified. However, distinguishing athymia from SCID is crucial, as treatments differ for these conditions. Cultured thymus tissue is being investigated as a treatment for congenital athymia. Here, we review what is known about the epidemiology, underlying etiologies, clinical manifestations, and treatments for congenital athymia.

Keywords: Congenital athymia; DiGeorge; T cells; immunodeficiency; midline defects.

Conflict of interest statement

Cathleen Collins, Emily Sharpe, Abigail Silber and Elena Hsieh receive consulting fees from Enzyvant Therapeutics. Sarah Kulke is Vice President of Medical Affairs at Enzyvant Therapeutics (since May 2020) and therefore receives salary, annual performance bonus, and cash based long term incentive program.

Figures

Fig. 1
Fig. 1
Genetic etiologies of congenital athymia and impact on embryogenesis. Artistic rendering of the different etiologies associated with congenital athymia and how they impact the developing embryo. Genetic etiologies can be categorized by whether the impacted gene is involved in development of the entire midline region or more directly in thymic organ development
Fig. 2
Fig. 2
Normal thymus embryogenesis. Artistic rendering of the development of the thymus and parathyroid from the third pharyngeal pouch. Spatial and functional separation occurs early, with the thymus in the ventral posterior region and the parathyroid more anterior. During development, the thymus migrates caudally and medially to its final position in the anterior part of the thorax and fuses with the developing thymus from the contralateral side
Fig. 3
Fig. 3
Congenital athymia diagnostic pathway. Schematic of the diagnostic pathway for congenital athymia from initial identification through newborn screening to final diagnosis, including steps for how to accurately differentiate athymia from T−B+NK+ SCID

References

    1. Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC (2014).
    1. Markert ML, Hummell DS, Rosenblatt HM, Schiff SE, Harville TO, Williams LW, et al. Complete DiGeorge syndrome: persistence of profound immunodeficiency. J Pediatr. 1998;132(1):15–21. doi: 10.1016/s0022-3476(98)70478-0.
    1. van der Burg M, Mahlaoui N, Gaspar HB, Pai SY. Universal newborn screening for severe combined Immunodeficiency (SCID) Front Pediatr. 2019;7:373. doi: 10.3389/fped.2019.00373.
    1. Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–738. doi: 10.1001/jama.2014.9132.
    1. Markert ML, Devlin BH, Alexieff MJ, Li J, McCarthy EA, Gupton SE, et al. Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood. 2007;109(10):4539–4547. doi: 10.1182/blood-2006-10-048652.
    1. Patil SJ, Das Bhowmik A, Bhat V, Satidevi Vineeth V, Vasudevamurthy R, Dalal A. Autosomal recessive otofaciocervical syndrome type 2 with novel homozygous small insertion in PAX1 gene. Am J Med Genet A. 2018;176(5):1200–1206. doi: 10.1002/ajmg.a.38659.
    1. Markert ML, Marques JG, Neven B, Devlin BH, McCarthy EA, Chinn IK, et al. First use of thymus transplantation therapy for FOXN1 deficiency (nude/SCID): a report of 2 cases. Blood. 2011;117(2):688–696. doi: 10.1182/blood-2010-06-292490.
    1. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362(9393):1366–73. doi: 10.1016/s0140-6736(03)14632-6.
    1. Chinen J, Rosenblatt HM, Smith EO, Shearer WT, Noroski LM. Long-term assessment of T-cell populations in DiGeorge syndrome. J Allergy Clin Immunol. 2003;111(3):573–579. doi: 10.1067/mai.2003.165.
    1. Hong R. The DiGeorge anomaly. Clin Rev Allergy Immunol. 2001;20(1):43–60. doi: 10.1385/CRIAI:20:1:43.
    1. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997;34(10):798–804. doi: 10.1136/jmg.34.10.798.
    1. Muller W, Peter HH, Wilken M, Juppner H, Kallfelz HC, Krohn HP, et al. The DiGeorge syndrome. I. Clinical evaluation and course of partial and complete forms of the syndrome. Eur J Pediatr. 1988;147(5):496–502. doi: 10.1007/BF00441974.
    1. Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, et al. Retinoic acid embryopathy. N Engl J Med. 1985;313(14):837–841. doi: 10.1056/NEJM198510033131401.
    1. Markert ML, Devlin BH, Chinn IK, McCarthy EA. Thymus transplantation in complete DiGeorge anomaly. Immunol Res. 2009;44(1–3):61–70. doi: 10.1007/s12026-008-8082-5.
    1. Markert ML, Alexieff MJ, Li J, Sarzotti M, Ozaki DA, Devlin BH, et al. Complete DiGeorge syndrome: development of rash, lymphadenopathy, and oligoclonal T cells in 5 cases. J Allergy Clin Immunol. 2004;113(4):734–741. doi: 10.1016/j.jaci.2004.01.766.
    1. Janda A, Sedlacek P, Honig M, Friedrich W, Champagne M, Matsumoto T, et al. Multicenter survey on the outcome of transplantation of hematopoietic cells in patients with the complete form of DiGeorge anomaly. Blood. 2010;116(13):2229–2236. doi: 10.1182/blood-2010-03-275966.
    1. Pignata C, Gaetaniello L, Masci AM, Frank J, Christiano A, Matrecano E, et al. Human equivalent of the mouse Nude/SCID phenotype: long-term evaluation of immunologic reconstitution after bone marrow transplantation. Blood. 2001;97(4):880–885. doi: 10.1182/blood.v97.4.880.
    1. Markert ML, Devlin BH, McCarthy EA. Thymus transplantation. Clin Immunol. 2010;135(2):236–246. doi: 10.1016/j.clim.2010.02.007.
    1. Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011;138(18):3865–3878. doi: 10.1242/dev.059998.
    1. Dzhagalov I, Phee H. How to find your way through the thymus: a practical guide for aspiring T cells. Cell Mol Life Sci. 2012;69(5):663–682. doi: 10.1007/s00018-011-0791-6.
    1. Alexandropoulos K, Danzl NM. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res. 2012;54(1–3):177–190. doi: 10.1007/s12026-012-8301-y.
    1. Blackburn CC, Augustine CL, Li R, Harvey RP, Malin MA, Boyd RL, et al. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A. 1996;93(12):5742–5746. doi: 10.1073/pnas.93.12.5742.
    1. Nowell CS, Bredenkamp N, Tetelin S, Jin X, Tischner C, Vaidya H, et al. Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet. 2011;7(11):e1002348. doi: 10.1371/journal.pgen.1002348.
    1. Zuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, et al. Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol. 2016;17(10):1206–1215. doi: 10.1038/ni.3537.
    1. Brissette JL, Li J, Kamimura J, Lee D, Dotto GP. The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev. 1996;10(17):2212–2221. doi: 10.1101/gad.10.17.2212.
    1. Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, et al. Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem. 2010;285(8):5836–5847. doi: 10.1074/jbc.M109.072124.
    1. Rota IA, Dhalla F. FOXN1 deficient nude severe combined immunodeficiency. Orphanet J Rare Dis. 2017;12(1):6. doi: 10.1186/s13023-016-0557-1.
    1. Pignata C, Fiore M, Guzzetta V, Castaldo A, Sebastio G, Porta F, et al. Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet. 1996;65(2):167–70. 10.1002/(SICI)1096-8628(19961016)65:2%3c167::AID-AJMG17%;2-O.
    1. Adriani M, Martinez-Mir A, Fusco F, Busiello R, Frank J, Telese S, et al. Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet. 2004;68(Pt 3):265–268. doi: 10.1046/j.1529-8817.2004.00091.x.
    1. Chou J, Massaad MJ, Wakim RH, Bainter W, Dbaibo G, Geha RS. A novel mutation in FOXN1 resulting in SCID: a case report and literature review. Clin Immunol. 2014;155(1):30–32. doi: 10.1016/j.clim.2014.08.005.
    1. Radha Rama Devi A, Panday NN, Naushad SM. FOXN1 Italian founder mutation in Indian family: implications in prenatal diagnosis. Gene. 2017;627:222–5. doi: 10.1016/j.gene.2017.06.033.
    1. Auricchio L, Adriani M, Frank J, Busiello R, Christiano A, Pignata C. Nail dystrophy associated with a heterozygous mutation of the nude/SCID human FOXN1 (WHN) gene. Arch Dermatol. 2005;141(5):647–648. doi: 10.1001/archderm.141.5.647.
    1. Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–561. doi: 10.1016/j.ajhg.2019.07.014.
    1. Du Q, Huynh LK, Coskun F, Molina E, King MA, Raj P, et al. FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans. J Clin Invest. 2019;129(11):4724–4738. doi: 10.1172/JCI127565.
    1. Wallin J, Eibel H, Neubuser A, Wilting J, Koseki H, Balling R. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development. 1996;122(1):23–30. doi: 10.1242/dev.122.1.23.
    1. Paganini I, Sestini R, Capone GL, Putignano AL, Contini E, Giotti I, et al. A novel PAX1 null homozygous mutation in autosomal recessive otofaciocervical syndrome associated with severe combined immunodeficiency. Clin Genet. 2017;92(6):664–668. doi: 10.1111/cge.13085.
    1. Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM et al. PAX1 is essential for development and function of the human thymus. Sci Immunol. 2020;5(44). 10.1126/sciimmunol.aax1036.
    1. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410(6824):97–101. doi: 10.1038/35065105.
    1. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286–291. doi: 10.1038/85845.
    1. Chieffo C, Garvey N, Gong W, Roe B, Zhang G, Silver L, et al. Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics. 1997;43(3):267–277. doi: 10.1006/geno.1997.4829.
    1. Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet. 2002;11(8):915–922. doi: 10.1093/hmg/11.8.915.
    1. Xu H, Cerrato F, Baldini A. Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development. 2005;132(19):4387–4395. doi: 10.1242/dev.02018.
    1. Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ, et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn. 1996;206(4):379–90. 10.1002/(SICI)1097-0177(199608)206:4%3c379::AID-AJA4%;2-F.
    1. Manley NR, Selleri L, Brendolan A, Gordon J, Cleary ML. Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev Biol. 2004;276(2):301–312. doi: 10.1016/j.ydbio.2004.08.030.
    1. Reeh KA, Cardenas KT, Bain VE, Liu Z, Laurent M, Manley NR, et al. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis. Development. 2014;141(15):2950–2958. doi: 10.1242/dev.111641.
    1. Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS, Epstein JA, et al. Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet. 2004;13(15):1577–1585. doi: 10.1093/hmg/ddh176.
    1. Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, et al. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest. 2009;119(11):3301–3310. doi: 10.1172/JCI37561.
    1. Liu ZZ, Wang ZL, Choi TI, Huang WT, Wang HT, Han YY, et al. Chd7 is critical for early T-cell development and thymus organogenesis in zebrafish. Am J Pathol. 2018;188(4):1043–58. 10.1016/j.ajpath.2017.12.005.
    1. Jongmans MC, Admiraal RJ, van der Donk KP, Vissers LE, Baas AF, Kapusta L, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43(4):306–314. doi: 10.1136/jmg.2005.036061.
    1. Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, et al. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet. 2006;78(2):303–314. doi: 10.1086/500273.
    1. Wong MT, Scholvinck EH, Lambeck AJ, van Ravenswaaij-Arts CM. CHARGE syndrome: a review of the immunological aspects. Eur J Hum Genet. 2015;23(11):1451–1459. doi: 10.1038/ejhg.2015.7.
    1. Assing K, Nielsen C, Kirchhoff M, Madsen HO, Ryder LP, Fisker N. CD4+ CD31+ recent thymic emigrants in CHD7 haploinsufficiency (CHARGE syndrome): a case. Hum Immunol. 2013;74(9):1047–1050. doi: 10.1016/j.humimm.2013.06.002.
    1. Chopra C, Baretto R, Duddridge M, Browning MJ. T-cell immunodeficiency in CHARGE syndrome. Acta Paediatr. 2009;98(2):408–410. doi: 10.1111/j.1651-2227.2008.01077.x.
    1. Gennery AR, Slatter MA, Rice J, Hoefsloot LH, Barge D, McLean-Tooke A, et al. Mutations in CHD7 in patients with CHARGE syndrome cause T-B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome. Clin Exp Immunol. 2008;153(1):75–80. doi: 10.1111/j.1365-2249.2008.03681.x.
    1. Hoover-Fong J, Savage WJ, Lisi E, Winkelstein J, Thomas GH, Hoefsloot LH, et al. Congenital T cell deficiency in a patient with CHARGE syndrome. J Pediatr. 2009;154(1):140–142. doi: 10.1016/j.jpeds.2008.07.049.
    1. Inoue H, Takada H, Kusuda T, Goto T, Ochiai M, Kinjo T, et al. Successful cord blood transplantation for a CHARGE syndrome with CHD7 mutation showing DiGeorge sequence including hypoparathyroidism. Eur J Pediatr. 2010;169(7):839–844. doi: 10.1007/s00431-009-1126-6.
    1. Kaliakatsos M, Giannakopoulos A, Fryssira H, Kanariou M, Skiathitou AV, Siahanidou T, et al. Combined microdeletions and CHD7 mutation causing severe CHARGE/DiGeorge syndrome: clinical presentation and molecular investigation by array-CGH. J Hum Genet. 2010;55(11):761–763. doi: 10.1038/jhg.2010.95.
    1. Sanka M, Tangsinmankong N, Loscalzo M, Sleasman JW, Dorsey MJ. Complete DiGeorge syndrome associated with CHD7 mutation. J Allergy Clin Immunol. 2007;120(4):952–954. doi: 10.1016/j.jaci.2007.08.013.
    1. Writzl K, Cale CM, Pierce CM, Wilson LC, Hennekam RC. Immunological abnormalities in CHARGE syndrome. Eur J Med Genet. 2007;50(5):338–345. doi: 10.1016/j.ejmg.2007.05.002.
    1. Jyonouchi S, McDonald-McGinn DM, Bale S, Zackai EH, Sullivan KE. CHARGE (coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome: a comparison of immunologic and nonimmunologic phenotypic features. Pediatrics. 2009;123(5):e871-7. 10.1542/peds.2008-3400.
    1. Liu N, Schoch K, Luo X, Pena LDM, Bhavana VH, Kukolich MK, et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Hum Mol Genet. 2018;27(14):2454–2465. doi: 10.1093/hmg/ddy146.
    1. Bernstock JD, Totten AH, Elkahloun AG, Johnson KR, Hurst AC, Goldman F et al. Recurrent microdeletions at chromosome 2p11.2 are associated with thymic hypoplasia and features resembling DiGeorge syndrome. J Allergy Clin Immunol. 2020;145(1):358-67 e2. doi:10.1016/j.jaci.2019.09.020.
    1. Dornemann R, Koch R, Mollmann U, Falkenberg MK, Mollers M, Klockenbusch W, et al. Fetal thymus size in pregnant women with diabetic diseases. J Perinat Med. 2017;45(5):595–601. doi: 10.1515/jpm-2016-0400.
    1. Wang R, Martinez-Frias ML, Graham JM., Jr Infants of diabetic mothers are at increased risk for the oculo-auriculo-vertebral sequence: a case-based and case-control approach. J Pediatr. 2002;141(5):611–617. doi: 10.1067/mpd.2002.128891.
    1. Coberly S, Lammer E, Alashari M. Retinoic acid embryopathy: case report and review of literature. Pediatr Pathol Lab Med. 1996;16(5):823–836. doi: 10.1080/15513819609169308.
    1. Brown H, Mason G, Tang T. Retinoids and pregnancy: an update. Obstet Gynaecol. 2014;16:7–11.
    1. Roberts C, Ivins SM, James CT, Scambler PJ. Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn. 2005;232(4):928–938. doi: 10.1002/dvdy.20268.
    1. Mulder GB, Manley N, Maggio-Price L. Retinoic acid-induced thymic abnormalities in the mouse are associated with altered pharyngeal morphology, thymocyte maturation defects, and altered expression of Hoxa3 and Pax1. Teratology. 1998;58(6):263–75. 10.1002/(SICI)1096-9926(199812)58:6%3c263::AID-TERA8%;2-A.
    1. Devriendt K, Fryns JP, Mortier G, van Thienen MN, Keymolen K. The annual incidence of DiGeorge/velocardiofacial syndrome. J Med Genet. 1998;35(9):789–790. doi: 10.1136/jmg.35.9.789-a.
    1. Tezenas Du Montcel S, Mendizabai H, Ayme S, Levy A, Philip N. Prevalence of 22q11 microdeletion. J Med Genet. 1996;33(8):719. doi: 10.1136/jmg.33.8.719.
    1. Issekutz KA, Graham JM, Jr, Prasad C, Smith IM, Blake KD. An epidemiological analysis of CHARGE syndrome: preliminary results from a Canadian study. Am J Med Genet A. 2005;133A(3):309–317. doi: 10.1002/ajmg.a.30560.
    1. Wilson DI, Cross IE, Burn J. Minimum prevalence of chromosome 22q11 deletions. In: Annual Meeting of the American Society of Human Genetics. Am J Hum Genet. 1994 Oct; Montreal, Canada;55(suppl 3).
    1. Rope AF, Cragun DL, Saal HM, Hopkin RJ. DiGeorge anomaly in the absence of chromosome 22q11.2 deletion. J Pediatr. 2009;155(4):560–5. doi: 10.1016/j.jpeds.2009.04.010.
    1. Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2). 10.1542/peds.2018-2300.
    1. Kong FK, Chen CL, Six A, Hockett RD, Cooper MD. T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci U S A. 1999;96(4):1536–1540. doi: 10.1073/pnas.96.4.1536.
    1. Yu GP, Nadeau KC, Berk DR, de Saint BG, Lambert N, Knapnougel P, et al. Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID. Pediatr Transplant. 2011;15(7):733–741. doi: 10.1111/j.1399-3046.2011.01563.x.
    1. Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods. 2017;14(5):521–530. doi: 10.1038/nmeth.4237.
    1. Bifsha P, Leiding JW, Pai SY, Colamartino ABL, Hartog N, Church JA, et al. Diagnostic assay to assist clinical decisions for unclassified severe combined immune deficiency. Blood Adv. 2020;4(12):2606–2610. doi: 10.1182/bloodadvances.2020001736.
    1. Bosticardo M, Pala F, Calzoni E, Delmonte OM, Dobbs K, Gardner CL, et al. Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia. Blood Adv. 2020;4(12):2611–2616. doi: 10.1182/bloodadvances.2020001730.
    1. Smith CS, Schoder H, Yeung HW. Thymic extension in the superior mediastinum in patients with thymic hyperplasia: potential cause of false-positive findings on 18F-FDG PET/CT. AJR Am J Roentgenol. 2007;188(6):1716–1721. doi: 10.2214/AJR.06.0552.
    1. Markert ML, Sarzotti M, Ozaki DA, Sempowski GD, Rhein ME, Hale LP, et al. Thymus transplantation in complete DiGeorge syndrome: immunologic and safety evaluations in 12 patients. Blood. 2003;102(3):1121–1130. doi: 10.1182/blood-2002-08-2545.
    1. Markert ML, Alexieff MJ, Li J, Sarzotti M, Ozaki DA, Devlin BH, et al. Postnatal thymus transplantation with immunosuppression as treatment for DiGeorge syndrome. Blood. 2004;104(8):2574–2581. doi: 10.1182/blood-2003-08-2984.
    1. Selim MA, Markert ML, Burchette JL, Herman CM, Turner JW. The cutaneous manifestations of atypical complete DiGeorge syndrome: a histopathologic and immunohistochemical study. J Cutan Pathol. 2008;35(4):380–385. doi: 10.1111/j.1600-0560.2007.00816.x.
    1. Albuquerque AS, Marques JG, Silva SL, Ligeiro D, Devlin BH, Dutrieux J, et al. Human FOXN1-deficiency is associated with alphabeta double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS ONE. 2012;7(5):e37042. doi: 10.1371/journal.pone.0037042.
    1. Collard HR, Boeck A, Mc Laughlin TM, Watson TJ, Schiff SE, Hale LP, et al. Possible extrathymic development of nonfunctional T cells in a patient with complete DiGeorge syndrome. Clin Immunol. 1999;91(2):156–162. doi: 10.1006/clim.1999.4691.
    1. Vu QV, Wada T, Toma T, Tajima H, Maeda M, Tanaka R, et al. Clinical and immunophenotypic features of atypical complete DiGeorge syndrome. Pediatr Int. 2013;55(1):2–6. doi: 10.1111/j.1442-200X.2012.03722.x.
    1. Junker AK, Chan KW, Massing BG. Clinical and immune recovery from Omenn syndrome after bone marrow transplantation. J Pediatr. 1989;114(4 Pt 1):596–600. doi: 10.1016/s0022-3476(89)80702-4.
    1. Ocejo-Vinyals JG, Lozano MJ, Sanchez-Velasco P, Escribano de Diego J, Paz-Miguel JE, Leyva-Cobian F. An unusual concurrence of graft versus host disease caused by engraftment of maternal lymphocytes with DiGeorge anomaly. Arch Dis Child. 2000;83(2):165–9. doi: 10.1136/adc.83.2.165.
    1. Davies EG, Cheung M, Gilmour K, Maimaris J, Curry J, Furmanski A et al. Thymus transplantation for complete DiGeorge syndrome: European experience. J Allergy Clin Immunol. 2017;140(6):1660–70 e16. 10.1016/j.jaci.2017.03.020.
    1. Rice HE, Skinner MA, Mahaffey SM, Oldham KT, Ing RJ, Hale LP, et al. Thymic transplantation for complete DiGeorge syndrome: medical and surgical considerations. J Pediatr Surg. 2004;39(11):1607–1615. doi: 10.1016/j.jpedsurg.2004.07.020.
    1. Janda A, Sedlacek P, Mejstrikova E, Zdrahalova K, Hrusak O, Kalina T, et al. Unrelated partially matched lymphocyte infusions in a patient with complete DiGeorge/CHARGE syndrome. Pediatr Transplant. 2007;11(4):441–447. doi: 10.1111/j.1399-3046.2007.00702.x.
    1. Gaspar HB, Qasim W, Davies EG, Rao K, Amrolia PJ, Veys P. How I treat severe combined immunodeficiency. Blood. 2013;122(23):3749–3758. doi: 10.1182/blood-2013-02-380105.
    1. Griffith LM, Cowan MJ, Notarangelo LD, Puck JM, Buckley RH, Candotti F et al. Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management. J Allergy Clin Immunol. 2009;124(6):1152–60 e12. 10.1016/j.jaci.2009.10.022.
    1. Dergousoff BA, Vayalumkal JV, Wright NAM. Survey of Infection control precautions for patients with severe combined immune deficiency. J Clin Immunol. 2019;39(8):753–761. doi: 10.1007/s10875-019-00671-y.
    1. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071. doi: 10.1038/nrdp.2015.71.
    1. Rivers L, Gaspar HB. Severe combined immunodeficiency: recent developments and guidance on clinical management. Arch Dis Child. 2015;100(7):667–672. doi: 10.1136/archdischild-2014-306425.
    1. Reid B, Courtney S. Isolation protocol for patients with severe combined immune deficiency. LymphoSign Journal. 2015;2(3). 10.14785/lpsn-2015-0011.
    1. Medical Advisory Committee of the Immune Deficiency F. Shearer WT, Fleisher TA, Buckley RH, Ballas Z, Ballow M, et al. Recommendations for live viral and bacterial vaccines in immunodeficient patients and their close contacts. J Allergy Clin Immunol. 2014;133(4):961–6. doi: 10.1016/j.jaci.2013.11.043.
    1. Hofstetter AM, Jakob K, Klein NP, Dekker CL, Edwards KM, Halsey NA, et al. Live vaccine use and safety in DiGeorge syndrome. Pediatrics. 2014;133(4):e946–e954. doi: 10.1542/peds.2013-0831.
    1. Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome) Pediatrics. 2003;112(4):e325. doi: 10.1542/peds.112.4.e325.
    1. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602–10 e1–11. 10.1016/j.jaci.2010.06.015.
    1. Haddad E, Hoenig M. Hematopoietic stem cell transplantation for severe combined immunodeficiency (SCID) Front Pediatr. 2019;7:481. doi: 10.3389/fped.2019.00481.
    1. Markert ML, Li J, Devlin BH, Hoehner JC, Rice HE, Skinner MA, et al. Use of allograft biopsies to assess thymopoiesis after thymus transplantation. J Immunol. 2008;180(9):6354–6364. doi: 10.4049/jimmunol.180.9.6354.
    1. Markert M, Gupton S, McCarthy E. Results of 105 patients who received cultured thymus tissue implants. In: 12th Annual Meeting of the Clinical Immunology Society: 2021 Virtual Annual Meeting: Immune Deficiency and Dysregulation North American Conference. J Clin Immunol. 2021 Apr; Virtual;41(Suppl 1).
    1. Hasten E, Morrow BE. Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genet. 2019;15(8):e1008301. doi: 10.1371/journal.pgen.1008301.

Source: PubMed

3
Sottoscrivi