An 8-Week Self-Administered At-Home Behavioral Skills-Based Virtual Reality Program for Chronic Low Back Pain: Double-Blind, Randomized, Placebo-Controlled Trial Conducted During COVID-19

Laura M Garcia, Brandon J Birckhead, Parthasarathy Krishnamurthy, Josh Sackman, Ian G Mackey, Robert G Louis, Vafi Salmasi, Todd Maddox, Beth D Darnall, Laura M Garcia, Brandon J Birckhead, Parthasarathy Krishnamurthy, Josh Sackman, Ian G Mackey, Robert G Louis, Vafi Salmasi, Todd Maddox, Beth D Darnall

Abstract

Background: Chronic low back pain is the most prevalent chronic pain condition worldwide and access to behavioral pain treatment is limited. Virtual reality (VR) is an immersive technology that may provide effective behavioral therapeutics for chronic pain.

Objective: We aimed to conduct a double-blind, parallel-arm, single-cohort, remote, randomized placebo-controlled trial for a self-administered behavioral skills-based VR program in community-based individuals with self-reported chronic low back pain during the COVID-19 pandemic.

Methods: A national online convenience sample of individuals with self-reported nonmalignant low back pain with duration of 6 months or more and with average pain intensity of 4 or more/10 was enrolled and randomized 1:1 to 1 of 2 daily (56-day) VR programs: (1) EaseVRx (immersive pain relief skills VR program); or (2) Sham VR (2D nature content delivered in a VR headset). Objective device use data and self-reported data were collected. The primary outcomes were the between-group effect of EaseVRx versus Sham VR across time points, and the between-within interaction effect representing the change in average pain intensity and pain-related interference with activity, stress, mood, and sleep over time (baseline to end-of-treatment at day 56). Secondary outcomes were global impression of change and change in physical function, sleep disturbance, pain self-efficacy, pain catastrophizing, pain acceptance, pain medication use, and user satisfaction. Analytic methods included intention-to-treat and a mixed-model framework.

Results: The study sample was 179 adults (female: 76.5%, 137/179; Caucasian: 90.5%, 162/179; at least some college education: 91.1%, 163/179; mean age: 51.5 years [SD 13.1]; average pain intensity: 5/10 [SD 1.2]; back pain duration ≥5 years: 67%, 120/179). No group differences were found for any baseline variable or treatment engagement. User satisfaction ratings were higher for EaseVRx versus Sham VR (P<.001). For the between-groups factor, EaseVRx was superior to Sham VR for all primary outcomes (highest P value=.009), and between-groups Cohen d effect sizes ranged from 0.40 to 0.49, indicating superiority was moderately clinically meaningful. For EaseVRx, large pre-post effect sizes ranged from 1.17 to 1.3 and met moderate to substantial clinical importance for reduced pain intensity and pain-related interference with activity, mood, and stress. Between-group comparisons for Physical Function and Sleep Disturbance showed superiority for the EaseVRx group versus the Sham VR group (P=.022 and .013, respectively). Pain catastrophizing, pain self-efficacy, pain acceptance, prescription opioid use (morphine milligram equivalent) did not reach statistical significance for either group. Use of over-the-counter analgesic use was reduced for EaseVRx (P<.01) but not for Sham VR.

Conclusions: EaseVRx had high user satisfaction and superior and clinically meaningful symptom reduction for average pain intensity and pain-related interference with activity, mood, and stress compared to sham VR. Additional research is needed to determine durability of treatment effects and to characterize mechanisms of treatment effects. Home-based VR may expand access to effective and on-demand nonpharmacologic treatment for chronic low back pain.

Trial registration: ClinicalTrials.gov NCT04415177; https://ichgcp.net/clinical-trials-registry/NCT04415177.

International registered report identifier (irrid): RR2-10.2196/25291.

Keywords: COVID-19; behavioral health; chronic pain; low back pain; opioids; pain treatment, randomized controlled trial; virtual reality.

Conflict of interest statement

Conflicts of Interest: LG, TM, and IM are employees of AppliedVR, Inc. JS is president of AppliedVR, Inc. BD is chief science advisor for AppliedVR, Inc. BB, PK, and VS are consultants for AppliedVR, Inc. RL is a prior advisor and minor shareholder of AppliedVR, Inc.

©Laura M Garcia, Brandon J Birckhead, Parthasarathy Krishnamurthy, Josh Sackman, Ian G Mackey, Robert G Louis, Vafi Salmasi, Todd Maddox, Beth D Darnall. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021.

Figures

Figure 1
Figure 1
Participant activities.
Figure 2
Figure 2
Visual display of EaseVRx (skills-based, interactive, 3D) and Sham VR (non-interactive 2D nature scenes).
Figure 3
Figure 3
CONSORT Flow Diagram.
Figure 4
Figure 4
Average pain intensity.
Figure 5
Figure 5
Pain-Related Interference with Activity.
Figure 6
Figure 6
Pain-Related Interference with Mood.
Figure 7
Figure 7
Pain Related Interference with Sleep.
Figure 8
Figure 8
Pain-Related Interference with Stress.

References

    1. Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education . Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. Washington (DC): National Academies Press; 2011.
    1. Freburger JK, Holmes GM, Agans RP, Jackman AM, Darter JD, Wallace AS, Castel LD, Kalsbeek WD, Carey TS. The rising prevalence of chronic low back pain. Arch Intern Med. 2009 Feb 09;169(3):251–8. doi: 10.1001/archinternmed.2008.543.
    1. Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP, Ferreira PH, Fritz JM, Koes BW, Peul W, Turner JA, Maher CG, Lancet Low Back Pain Series Working Group Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet. 2018 Jun 09;391(10137):2368–2383. doi: 10.1016/S0140-6736(18)30489-6.
    1. Williams A, Eccleston C, Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev. 2012 Nov 14;11:CD007407. doi: 10.1002/14651858.CD007407.pub3.
    1. Medicaid Strategies for Non-Opioid Pharmacologic and NonPharmacologic Chronic Pain Management. 2019. [2021-02-03]. .
    1. Turner JA, Anderson ML, Balderson BH, Cook AJ, Sherman KJ, Cherkin DC. Mindfulness-based stress reduction and cognitive behavioral therapy for chronic low back pain: similar effects on mindfulness, catastrophizing, self-efficacy, and acceptance in a randomized controlled trial. Pain. 2016 Nov 30;157(11):2434–2444. doi: 10.1097/j.pain.0000000000000635.
    1. Cherkin DC, Sherman KJ, Balderson BH, Cook AJ, Anderson ML, Hawkes RJ, Hansen KE, Turner JA. Effect of Mindfulness-Based Stress Reduction vs Cognitive Behavioral Therapy or Usual Care on Back Pain and Functional Limitations in Adults With Chronic Low Back Pain: A Randomized Clinical Trial. JAMA. 2016 Mar 22;315(12):1240–9. doi: 10.1001/jama.2016.2323.
    1. Darnall BD, Scheman J, Davin S, Burns JW, Murphy JL, Wilson AC, Kerns RD, Mackey SC. Pain Psychology: A Global Needs Assessment and National Call to Action. Pain Med. 2016 Feb 23;17(2):250–63. doi: 10.1093/pm/pnv095.
    1. Mojtabai R. National trends in long-term use of prescription opioids. Pharmacoepidemiol Drug Saf. 2018 May 06;27(5):526–534. doi: 10.1002/pds.4278.
    1. Eccleston C, Blyth FM, Dear BF, Fisher EA, Keefe FJ, Lynch ME, Palermo TM, Reid MC, Williams ACDC. Managing patients with chronic pain during the COVID-19 outbreak: considerations for the rapid introduction of remotely supported (eHealth) pain management services. Pain. 2020 May 2;161(5):889–893. doi: 10.1097/j.pain.0000000000001885.
    1. Fisher E, Law E, Palermo TM, Eccleston C. Psychological therapies (remotely delivered) for the management of chronic and recurrent pain in children and adolescents. Cochrane Database Syst Rev. 2014 May 14;2014:CD011118. doi: 10.1002/14651858.CD011118.
    1. Ziadni M, Gonzalez-Castro LA, Darnall BD. Virtual Single-Session. 2020. [2021-02-03]. .
    1. Darnall B, Ziadni MS, Krishnamurthy P, Flood P, Heathcote LC, Mackey IG, Taub CJ, Wheeler A. "My Surgical Success": Effect of a Digital Behavioral Pain Medicine Intervention on Time to Opioid Cessation After Breast Cancer Surgery-A Pilot Randomized Controlled Clinical Trial. Pain Med. 2019 Nov 01;20(11):2228–2237. doi: 10.1093/pm/pnz094.
    1. Pain Trainer. [2021-02-03].
    1. Darnall BD, Krishnamurthy P, Tsuei J, Minor JD. Self-Administered Skills-Based Virtual Reality Intervention for Chronic Pain: Randomized Controlled Pilot Study. JMIR Form Res. 2020 Jul 07;4(7):e17293. doi: 10.2196/17293.
    1. Navarro-Haro MV, Modrego-Alarcón M, Hoffman HG, López-Montoyo A, Navarro-Gil M, Montero-Marin J, García-Palacios A, Borao L, García-Campayo J. Evaluation of a Mindfulness-Based Intervention With and Without Virtual Reality Dialectical Behavior Therapy Mindfulness Skills Training for the Treatment of Generalized Anxiety Disorder in Primary Care: A Pilot Study. Front Psychol. 2019 Jan 28;10:55. doi: 10.3389/fpsyg.2019.00055. doi: 10.3389/fpsyg.2019.00055.
    1. Lindner P, Dagöö J, Hamilton W, Miloff A, Andersson G, Schill A, Carlbring P. Virtual Reality exposure therapy for public speaking anxiety in routine care: a single-subject effectiveness trial. Cogn Behav Ther. 2021 Jan 01;50(1):67–87. doi: 10.1080/16506073.2020.1795240.
    1. Miloff A, Lindner P, Dafgård P, Deak S, Garke M, Hamilton W, Heinsoo J, Kristoffersson G, Rafi J, Sindemark K, Sjölund J, Zenger M, Reuterskiöld L, Andersson G, Carlbring P. Automated virtual reality exposure therapy for spider phobia vs. in-vivo one-session treatment: A randomized non-inferiority trial. Behav Res Ther. 2019 Jul;118:130–140. doi: 10.1016/j.brat.2019.04.004.
    1. Tejera D, Beltran-Alacreu H, Cano-de-la-Cuerda R, Leon Hernández Jose Vicente, Martín-Pintado-Zugasti Aitor, Calvo-Lobo C, Gil-Martínez Alfonso, Fernández-Carnero Josué. Effects of Virtual Reality versus Exercise on Pain, Functional, Somatosensory and Psychosocial Outcomes in Patients with Non-specific Chronic Neck Pain: A Randomized Clinical Trial. Int J Environ Res Public Health. 2020 Aug 16;17(16):5950. doi: 10.3390/ijerph17165950.
    1. Hoffman HG, Richards T, Coda B, Richards A, Sharar SR. The illusion of presence in immersive virtual reality during an fMRI brain scan. Cyberpsychol Behav. 2003 Apr;6(2):127–31. doi: 10.1089/109493103321640310.
    1. Gold JI, Belmont KA, Thomas DA. The neurobiology of virtual reality pain attenuation. Cyberpsychol Behav. 2007 Aug;10(4):536–44. doi: 10.1089/cpb.2007.9993.
    1. Smith V, Warty RR, Sursas JA, Payne O, Nair A, Krishnan S, da Silva Costa F, Wallace EM, Vollenhoven B. The Effectiveness of Virtual Reality in Managing Acute Pain and Anxiety for Medical Inpatients: Systematic Review. J Med Internet Res. 2020 Nov 02;22(11):e17980. doi: 10.2196/17980.
    1. Gold J, Mahrer NE. Is Virtual Reality Ready for Prime Time in the Medical Space? A Randomized Control Trial of Pediatric Virtual Reality for Acute Procedural Pain Management. J Pediatr Psychol. 2018 Apr 01;43(3):266–275. doi: 10.1093/jpepsy/jsx129.
    1. Atzori B, Hoffman HG, Vagnoli L, Patterson DR, Alhalabi W, Messeri A, Lauro Grotto R. Virtual Reality Analgesia During Venipuncture in Pediatric Patients With Onco-Hematological Diseases. Front Psychol. 2018 Dec 20;9:2508. doi: 10.3389/fpsyg.2018.02508. doi: 10.3389/fpsyg.2018.02508.
    1. Atzori B, Lauro Grotto R, Giugni A, Calabrò M, Alhalabi W, Hoffman HG. Virtual Reality Analgesia for Pediatric Dental Patients. Front Psychol. 2018 Nov 23;9:2265. doi: 10.3389/fpsyg.2018.02265. doi: 10.3389/fpsyg.2018.02265.
    1. Gold JI, Kim SH, Kant AJ, Joseph MH, Rizzo A. Effectiveness of virtual reality for pediatric pain distraction during i.v. placement. Cyberpsychol Behav. 2006 Apr;9(2):207–12. doi: 10.1089/cpb.2006.9.207.
    1. Haisley KR, Straw OJ, Müller DT, Antiporda MA, Zihni AM, Reavis KM, Bradley DD, Dunst CM. Feasibility of implementing a virtual reality program as an adjuvant tool for peri-operative pain control; Results of a randomized controlled trial in minimally invasive foregut surgery. Complement Ther Med. 2020 Mar;49:102356. doi: 10.1016/j.ctim.2020.102356.
    1. Koç Özkan T, Polat F. The Effect of Virtual Reality and Kaleidoscope on Pain and Anxiety Levels During Venipuncture in Children. J Perianesth Nurs. 2020 Apr;35(2):206–211. doi: 10.1016/j.jopan.2019.08.010.
    1. Hoffman HG, Chambers GT, Meyer WJ, Arceneaux LL, Russell WJ, Seibel EJ, Richards TL, Sharar SR, Patterson DR. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann Behav Med. 2011 Apr 25;41(2):183–91. doi: 10.1007/s12160-010-9248-7.
    1. Khadra C, Ballard A, Déry J, Paquin D, Fortin J, Perreault I, Labbe D, Hoffman HG, Bouchard S, LeMay S. Projector-based virtual reality dome environment for procedural pain and anxiety in young children with burn injuries: a pilot study. JPR. 2018 Feb;Volume 11:343–353. doi: 10.2147/jpr.s151084.
    1. Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, Albert M, Tashjian V, Lam R, Ahn J, Dailey F, Rosen BT, Vrahas M, Little M, Garlich J, Dzubur E, IsHak W, Danovitch I. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS One. 2019 Aug 14;14(8):e0219115. doi: 10.1371/journal.pone.0219115.
    1. Dascal J, Reid Mark, IsHak WW, Spiegel B, Recacho J, Rosen B, Danovitch I. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials. Innov Clin Neurosci. 2017;14(1-2):14–21.
    1. Sato K, Fukumori S, Matsusaki T, Maruo T, Ishikawa S, Nishie H, Takata K, Mizuhara H, Mizobuchi S, Nakatsuka H, Matsumi M, Gofuku A, Yokoyama M, Morita K. Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: an open-label pilot study. Pain Med. 2010 Apr 01;11(4):622–9. doi: 10.1111/j.1526-4637.2010.00819.x.
    1. Shiri S, Feintuch U, Weiss N, Pustilnik A, Geffen T, Kay B, Meiner Z, Berger I. A virtual reality system combined with biofeedback for treating pediatric chronic headache--a pilot study. Pain Med. 2013 May 01;14(5):621–7. doi: 10.1111/pme.12083.
    1. Garcia-Palacios A, Herrero R, Vizcaíno Y, Belmonte MA, Castilla D, Molinari G, Baños RM, Botella C. Integrating Virtual Reality With Activity Management for the Treatment of Fibromyalgia. The Clinical Journal of Pain. 2015;31(6):564–572. doi: 10.1097/ajp.0000000000000196.
    1. Herrero R, García-Palacios A, Castilla D, Molinari G, Botella C. Virtual reality for the induction of positive emotions in the treatment of fibromyalgia: a pilot study over acceptability, satisfaction, and the effect of virtual reality on mood. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):379–84. doi: 10.1089/cyber.2014.0052.
    1. Sulea C, Soomro A, Boyd C, Wiederhold BK. Pain management in virtual reality: a comprehensive research chart. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):402–13. doi: 10.1089/cyber.2014.1514.
    1. Wiederhold BK, Gao K, Sulea C, Wiederhold MD. Virtual reality as a distraction technique in chronic pain patients. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):346–52. doi: 10.1089/cyber.2014.0207.
    1. Ahern M, Dean LV, Stoddard CC, Agrawal A, Kim K, Cook CE, Narciso Garcia A. The Effectiveness of Virtual Reality in Patients With Spinal Pain: A Systematic Review and Meta-Analysis. Pain Pract. 2020 Jul;20(6):656–675. doi: 10.1111/papr.12885.
    1. Gumaa M, Rehan Youssef A. Is Virtual Reality Effective in Orthopedic Rehabilitation? A Systematic Review and Meta-Analysis. Phys Ther. 2019 Oct 28;99(10):1304–1325. doi: 10.1093/ptj/pzz093.
    1. Nambi G, Abdelbasset WK, Alrawaili SM, Alsubaie SF, Abodonya AM, Saleh AK. Virtual reality or isokinetic training; its effect on pain, kinesiophobia and serum stress hormones in chronic low back pain: A randomized controlled trial. THC. 2021 Jan 15;29(1):155–166. doi: 10.3233/thc-202301.
    1. Nambi G, Abdelbasset WK, Elsayed SH, Alrawaili SM, Abodonya AM, Saleh AK, Elnegamy TE. Comparative Effects of Isokinetic Training and Virtual Reality Training on Sports Performances in University Football Players with Chronic Low Back Pain-Randomized Controlled Study. Evid Based Complement Alternat Med. 2020 Jun 16;2020:2981273–10. doi: 10.1155/2020/2981273. doi: 10.1155/2020/2981273.
    1. Garcia LM, Darnall BD, Krishnamurthy P, Mackey IM, Sackman J, Louis R, Maddox T, Birckhead BJ. Self-Administered Behavioral Skills-Based At-Home Virtual Reality Therapy for Chronic Low Back Pain: Protocol for a Randomized Controlled Trial. JMIR Res Protoc. 2021 Jan 19;10(1):e25291. doi: 10.2196/25291.
    1. Kroenke K, Spitzer RL, Williams JBW. The Patient Health Questionnaire-2. Medical Care. 2003;41(11):1284–1292. doi: 10.1097/01.mlr.0000093487.78664.3c.
    1. Löwe B, Kroenke K, Gräfe K. Detecting and monitoring depression with a two-item questionnaire (PHQ-2) J Psychosom Res. 2005 Feb;58(2):163–71. doi: 10.1016/j.jpsychores.2004.09.006.
    1. Dworkin R, Turk DC, Farrar JT, Haythornthwaite JA, Jensen MP, Katz NP, Kerns RD, Stucki G, Allen RR, Bellamy N, Carr DB, Chandler J, Cowan P, Dionne R, Galer BS, Hertz S, Jadad AR, Kramer LD, Manning DC, Martin S, McCormick CG, McDermott MP, McGrath P, Quessy S, Rappaport BA, Robbins W, Robinson JP, Rothman M, Royal MA, Simon L, Stauffer JW, Stein W, Tollett J, Wernicke J, Witter J, IMMPACT Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain. 2005 Jan;113(1-2):9–19. doi: 10.1016/j.pain.2004.09.012.
    1. Dworkin R, Turk DC, McDermott MP, Peirce-Sandner S, Burke LB, Cowan P, Farrar JT, Hertz S, Raja SN, Rappaport BA, Rauschkolb C, Sampaio C. Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain. 2009 Dec;146(3):238–244. doi: 10.1016/j.pain.2009.08.019.
    1. Turk DC, Dworkin RH, Burke LB, Gershon R, Rothman M, Scott J, Allen RR, Atkinson HJ, Chandler J, Cleeland C, Cowan P, Dimitrova R, Dionne R, Farrar JT, Haythornthwaite JA, Hertz S, Jadad AR, Jensen MP, Kellstein D, Kerns RD, Manning DC, Martin S, Max MB, McDermott MP, McGrath P, Moulin DE, Nurmikko T, Quessy S, Raja S, Rappaport BA, Rauschkolb C, Robinson JP, Royal MA, Simon L, Stauffer JW, Stucki G, Tollett J, von Stein T, Wallace MS, Wernicke J, White RE, Williams AC, Witter J, Wyrwich KW. Developing patient-reported outcome measures for pain clinical trials: IMMPACT recommendations. Pain. 2006 Dec 05;125(3):208–215. doi: 10.1016/j.pain.2006.09.028.
    1. Deyo RA, Dworkin SF, Amtmann D, Andersson G, Borenstein D, Carragee E, Carrino J, Chou R, Cook K, DeLitto A, Goertz C, Khalsa P, Loeser J, Mackey S, Panagis J, Rainville J, Tosteson T, Turk D, Von Korff M, Weiner DK. Report of the NIH Task Force on research standards for chronic low back pain. Pain Med. 2014 Aug 01;15(8):1249–67. doi: 10.1111/pme.12538.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 2010 Mar 24;7(3):e1000251. doi: 10.1371/journal.pmed.1000251.
    1. Grant S, CONSORT-SPI Group The CONSORT-SPI 2018 extension: a new guideline for reporting social and psychological intervention trials. Addiction. 2019 Jan 30;114(1):4–8. doi: 10.1111/add.14411.
    1. US Department of Agriculture Rural-Urban Commuting Area Codes. [2020-11-01].
    1. Buckenmaier CC, Galloway KT, Polomano RC, McDuffie M, Kwon N, Gallagher RM. Preliminary validation of the Defense and Veterans Pain Rating Scale (DVPRS) in a military population. Pain Med. 2013 Jan 01;14(1):110–23. doi: 10.1111/j.1526-4637.2012.01516.x.
    1. Nassif TH, Hull A, Holliday SB, Sullivan P, Sandbrink F. Concurrent Validity of the Defense and Veterans Pain Rating Scale in VA Outpatients. Pain Med. 2015 Nov 01;16(11):2152–61. doi: 10.1111/pme.12866.
    1. Amtmann D, Cook KF, Jensen MP, Chen W-H, Choi S, Revicki D, Cella D, Rothrock N, Keefe F, Callahan L, Lai J-S. Development of a PROMIS item bank to measure pain interference. Pain. 2010 Jul;150(1):173–182. doi: 10.1016/j.pain.2010.04.025.
    1. Fries JF, Krishnan E, Rose M, Lingala B, Bruce B. Improved responsiveness and reduced sample size requirements of PROMIS physical function scales with item response theory. Arthritis Res Ther. 2011;13(5):R147. doi: 10.1186/ar3461.
    1. Yu L, Buysse DJ, Germain A, Moul DE, Stover A, Dodds NE, Johnston KL, Pilkonis PA. Development of short forms from the PROMIS™ sleep disturbance and Sleep-Related Impairment item banks. Behav Sleep Med. 2011 Dec 28;10(1):6–24. doi: 10.1080/15402002.2012.636266.
    1. Amtmann D, Cook KF, Johnson KL, Cella D. The PROMIS initiative: involvement of rehabilitation stakeholders in development and examples of applications in rehabilitation research. Arch Phys Med Rehabil. 2011 Oct;92(10 Suppl):S12–9. doi: 10.1016/j.apmr.2011.04.025.
    1. The Assessment Center. [2021-02-13].
    1. Gershon RC, Rothrock N, Hanrahan R, Bass M, Cella D. The use of PROMIS and assessment center to deliver patient-reported outcome measures in clinical research. J Appl Meas. 2010;11(3):304–14.
    1. Varni JW, Magnus B, Stucky BD, Liu Y, Quinn H, Thissen D, Gross HE, Huang I, DeWalt DA. Psychometric properties of the PROMIS ® pediatric scales: precision, stability, and comparison of different scoring and administration options. Qual Life Res. 2014 May 2;23(4):1233–43. doi: 10.1007/s11136-013-0544-0.
    1. Fischer HF, Rose M. Scoring Depression on a Common Metric: A Comparison of EAP Estimation, Plausible Value Imputation, and Full Bayesian IRT Modeling. Multivariate Behav Res. 2019 Sep 20;54(1):85–99. doi: 10.1080/00273171.2018.1491381.
    1. Hung M, Baumhauer JF, Latt LD, Saltzman CL, SooHoo NF, Hunt KJ. Validation of PROMIS ® Physical Function computerized adaptive tests for orthopaedic foot and ankle outcome research. Clin Orthop Relat Res. 2013 Nov;471(11):3466–74. doi: 10.1007/s11999-013-3097-1.
    1. Sturgeon JA, Darnall BD, Kao MJ, Mackey SC. Physical and psychological correlates of fatigue and physical function: a Collaborative Health Outcomes Information Registry (CHOIR) study. J Pain. 2015 Mar;16(3):291–8.e1. doi: 10.1016/j.jpain.2014.12.004.
    1. Sturgeon J, Dixon EA, Darnall BD, Mackey SC. Contributions of physical function and satisfaction with social roles to emotional distress in chronic pain: a Collaborative Health Outcomes Information Registry (CHOIR) study. Pain. 2015 Dec;156(12):2627–2633. doi: 10.1097/j.pain.0000000000000313.
    1. Sullivan M, Bishop Sr, Pivik J. The Pain Catastrophizing Scale: Development and validation. Psychological Assessment. 1995;7(4):524–532. doi: 10.1037/1040-3590.7.4.524.
    1. Darnall BD, Sturgeon JA, Cook KF, Taub CJ, Roy A, Burns JW, Sullivan M, Mackey SC. Development and Validation of a Daily Pain Catastrophizing Scale. J Pain. 2017 Sep;18(9):1139–1149. doi: 10.1016/j.jpain.2017.05.003.
    1. Nicholas MK, McGuire BE, Asghari A. A 2-item short form of the Pain Self-efficacy Questionnaire: development and psychometric evaluation of PSEQ-2. J Pain. 2015 Feb;16(2):153–63. doi: 10.1016/j.jpain.2014.11.002.
    1. Fish R, McGuire B, Hogan M, Morrison TG, Stewart I. Validation of the chronic pain acceptance questionnaire (CPAQ) in an Internet sample and development and preliminary validation of the CPAQ-8. Pain. 2010 Jun;149(3):435–443. doi: 10.1016/j.pain.2009.12.016.
    1. Brooke J. SUS: A 'Quick and Dirty' Usability Scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland AL, editors. Usability Evaluation In Industry. London, UK: Taylor and Francis; 1996. pp. 189–194.
    1. Opioid Oral Morphine Milligram Equivalent (MME) Conversion Factors. 2017. [2021-02-03]. .
    1. Rosenthal R, Rosnow RL. Essentials of Behavioral Research: Methods and Data Analysis (3rd edition) New York, NY: McGraw-Hill; 2008.
    1. Lakens Daniël. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013 Nov 26;4:863. doi: 10.3389/fpsyg.2013.00863. doi: 10.3389/fpsyg.2013.00863.
    1. Geraghty AWA, Torres LD, Leykin Y, Pérez-Stable EJ, Muñoz RF. Understanding attrition from international Internet health interventions: a step towards global eHealth. Health Promot Int. 2013 Sep;28(3):442–52. doi: 10.1093/heapro/das029.
    1. Geraghty AWA, Wood AM, Hyland ME. Attrition from self-directed interventions: investigating the relationship between psychological predictors, intervention content and dropout from a body dissatisfaction intervention. Soc Sci Med. 2010 Jul;71(1):30–7. doi: 10.1016/j.socscimed.2010.03.007.
    1. Eysenbach G. The law of attrition. J Med Internet Res. 2005 Mar 31;7(1):e11. doi: 10.2196/jmir.7.1.e11.
    1. Birckhead B, Khalil C, Liu X, Conovitz S, Rizzo A, Danovitch I, Bullock K, Spiegel B. Recommendations for Methodology of Virtual Reality Clinical Trials in Health Care by an International Working Group: Iterative Study. JMIR Ment Health. 2019 Jan 31;6(1):e11973. doi: 10.2196/11973.
    1. Gordon WJ, Landman A, Zhang H, Bates DW. Beyond validation: getting health apps into clinical practice. NPJ Digit Med. 2020;3:14. doi: 10.1038/s41746-019-0212-z.
    1. Neter E, Brainin E. eHealth literacy: extending the digital divide to the realm of health information. J Med Internet Res. 2012 Jan 27;14(1):e19. doi: 10.2196/jmir.1619.
    1. Saredakis D, Szpak A, Birckhead B, Keage HAD, Rizzo A, Loetscher T. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front Hum Neurosci. 2020;14:96. doi: 10.3389/fnhum.2020.00096. doi: 10.3389/fnhum.2020.00096.

Source: PubMed

3
Sottoscrivi