Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus

Chean Yeah Yong, Hui Kian Ong, Swee Keong Yeap, Kok Lian Ho, Wen Siang Tan, Chean Yeah Yong, Hui Kian Ong, Swee Keong Yeap, Kok Lian Ho, Wen Siang Tan

Abstract

Middle East respiratory syndrome (MERS) is a deadly viral respiratory disease caused by MERS-coronavirus (MERS-CoV) infection. To date, there is no specific treatment proven effective against this viral disease. In addition, no vaccine has been licensed to prevent MERS-CoV infection thus far. Therefore, our current review focuses on the most recent studies in search of an effective MERS vaccine. Overall, vaccine candidates against MERS-CoV are mainly based upon the viral spike (S) protein, due to its vital role in the viral infectivity, although several studies focused on other viral proteins such as the nucleocapsid (N) protein, envelope (E) protein, and non-structural protein 16 (NSP16) have also been reported. In general, the potential vaccine candidates can be classified into six types: viral vector-based vaccine, DNA vaccine, subunit vaccine, nanoparticle-based vaccine, inactivated-whole virus vaccine and live-attenuated vaccine, which are discussed in detail. Besides, the immune responses and potential antibody dependent enhancement of MERS-CoV infection are extensively reviewed. In addition, animal models used to study MERS-CoV and evaluate the vaccine candidates are discussed intensively.

Keywords: Middle East respiratory syndrome; animal model; antibody dependent enhancement; coronavirus; vaccine.

References

    1. Adney D. R., van Doremalen N., Brown V. R., Bushmaker T., Scott D., de Wit E., et al. (2014). Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg. Infect. Dis. 20 1999–2005. 10.3201/eid2012.141280
    1. Adney D. R., Wang L., van Doremalen N., Shi W., Zhang Y., Kong W. P., et al. (2019). Efficacy of an adjuvanted middle east respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas. Viruses 11:E212. 10.3390/v11030212
    1. Agnihothram S., Gopal R., Yount B. L., Jr., Donaldson E. F., Menachery V. D., Graham R. L. (2014). Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J. Infect Dis. 209 995–1006. 10.1093/infdis/jit609
    1. Agrawal A. S., Garron T., Tao X., Peng B. H., Wakamiya M., Chan T. S., et al. (2015). Generation of a transgenic mouse model of middle east respiratory syndrome coronavirus infection and disease. J. Virol. 89 3659–3670. 10.1128/JVI.03427-3414
    1. Agrawal A. S., Tao X., Algaissi A., Garron T., Narayanan K., Peng B. H., et al. (2016). Immunization with inactivated middle east respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum. Vaccin. Immunother. 12 2351–2356. 10.1080/21645515.2016.1177688
    1. Al-Amri S. S., Abbas A. T., Siddiq L. A., Alghamdi A., Sanki M. A., Al-Muhanna M. K., et al. (2017). Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein. Sci. Rep. 7:44875. 10.1038/srep44875
    1. Alagaili A. N., Briese T., Mishra N., Kapoor V., Sameroff S. C., Burbelo P. D., et al. (2014). Middle east respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio 5:e00884-e14. 10.1128/mBio.00884-14
    1. Alharbi N. K., Padron-Regalado E., Thompson C. P., Kupke A., Wells D., Sloan M. A., et al. (2017). ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine 35 3780–3788. 10.1016/j.vaccine.2017.05.032
    1. Almazan F., DeDiego M. L., Sola I., Zuniga S., Nieto-Torres J. L., Marquez-Jurado S., et al. (2013). Engineering a replication-competent, propagation-defective middle east respiratory syndrome coronavirus as a vaccine candidate. MBio 4:e00650-13. 10.1128/mBio.00650-13
    1. Baseler L. J., Falzarano D., Scott D. P., Rosenke R., Thomas T., Munster V. J., et al. (2016). An acute immune response to middle east respiratory syndrome coronavirus replication contributes to viral pathogenicity. Am. J. Pathol. 186 630–638. 10.1016/j.ajpath.2015.10.025
    1. Bodmer B. S., Fiedler A. H., Hanauer J. R. H., Prufer S., Muhlebach M. D. (2018). Live-attenuated bivalent measles virus-derived vaccines targeting middle east respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virol 521 99–107. 10.1016/j.virol.2018.05.028
    1. Bukreyev A., Lamirande E. W., Buchholz U. J., Vogel L. N., Elkins W. R., St Claire M., et al. (2004). Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363 2122–2127. 10.1016/s0140-6736(04)16501-x
    1. Carrion R., Jr., Patterson J. L. (2012). An animal model that reflects human disease: the common marmoset (Callithrix jacchus). Curr. Opi. Virol. 2 357–362. 10.1016/j.coviro.2012.02.007
    1. Cauchemez S., Nouvellet P., Cori A., Jombart T., Garske T., Clapham H., et al. (2016). Unraveling the drivers of MERS-CoV transmission. Proc. Natl. Acad. Sci. U.S.A. 113 9081–9086. 10.1073/pnas.1519235113
    1. Chan J. F., Yao Y., Yeung M. L., Deng W., Bao L., Jia L., et al. (2015). Treatment with lopinavir/ritonavir or interferon-beta1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis. 212 1904–1913. 10.1093/infdis/jiv392
    1. Channappanavar R., Zhao J., Perlman S. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunol. Res. 59 118–128. 10.1007/s12026-014-8534-z
    1. Chen Z., Bao L., Chen C., Zou T., Xue Y., Li F., et al. (2017). Human neutralizing monoclonal antibody inhibition of middle east respiratory syndrome coronavirus replication in the common marmoset. J. Infect. Dis. 215 1807–1815. 10.1093/infdis/jix209
    1. Chi H., Zheng X., Wang X., Wang C., Wang H., Gai W., et al. (2017). DNA vaccine encoding middle east respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine 35 2069–2075. 10.1016/j.vaccine.2017.02.063
    1. Chowell G., Abdirizak F., Lee S., Lee J., Jung E., Nishiura H., et al. (2015). Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med. 13:210. 10.1186/s12916-015-0450-450
    1. Chu D. K., Poon L. L., Gomaa M. M., Shehata M. M., Perera R. A., Abu Zeid D., et al. (2014). MERS coronaviruses in dromedary camels, Egypt. Emerg. Infect. Dis. 20 1049–1053. 10.3201/eid2006.140299
    1. Chu H., Zhou J., Wong B. H., Li C., Chan J. F., Cheng Z. S., et al. (2016). Middle east respiratory syndrome coronavirus rfficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J. Infect. Dis. 213 904–914. 10.1093/infdis/jiv380
    1. Chu H., Zhou J., Wong B. H., Li C., Cheng Z. S., Lin X., et al. (2014). Productive replication of middle east respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virol 454-455 197–205. 10.1016/j.virol.2014.02.018
    1. Cockrell A. S., Yount B. L., Scobey T., Jensen K., Douglas M., Beall A., et al. (2016). A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2:16226. 10.1038/nmicrobiol.2016.226
    1. Coleman C. M., Liu Y. V., Mu H., Taylor J. K., Massare M., Flyer D. C., et al. (2014). Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 32 3169–3174. 10.1016/j.vaccine.2014.04.016
    1. Coleman C. M., Venkataraman T., Liu Y. V., Glenn G. M., Smith G. E., Flyer D. C., et al. (2017). MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine 35 1586–1589. 10.1016/j.vaccine.2017.02.012
    1. Czub M., Weingartl H., Czub S., He R., Cao J. (2005). Evaluation of modified vaccinia virus ankara based recombinant SARS vaccine in ferrets. Vaccine 23 2273–2279. 10.1016/j.vaccine.2005.01.033
    1. de Wit E., Feldmann F., Horne E., Okumura A., Cameroni E., Haddock E., et al. (2019). Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset. Antiviral. Res. 163 70–74. 10.1016/j.antiviral.2019.01.016
    1. de Wit E., Rasmussen A. L., Falzarano D., Bushmaker T., Feldmann F., Brining D. L., et al. (2013). Middle east respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. Natl. Acad. Sci. U.S.A. 110 16598–16603. 10.1073/pnas.1310744110
    1. Deng Y., Lan J., Bao L., Huang B., Ye F., Chen Y., et al. (2018). Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerg. Microbes. Infect. 7:60. 10.1038/s41426-018-0056-57
    1. DeZure A. D., Berkowitz N. M., Graham B. S., Ledgerwood J. E. (2016). Whole-Inactivated and virus-like particle vaccine strategies for chikungunya virus. J. Infect. Dis. 214(suppl. 5), S497–S499. 10.1093/infdis/jiw352
    1. Dicks M. D. J., Spencer A. J., Edwards N. J., Wadell G., Bojang K., Gilbert S. C., et al. (2012). A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One 7:e40385. 10.1371/journal.pone.0040385
    1. Du L., Jiang S. (2015). Middle east respiratory syndrome: current status and future prospects for vaccine development. Exp. Opin. Biol. Ther. 15 1647–1651. 10.1517/14712598.2015.1092518
    1. Du L., Kou Z., Ma C., Tao X., Wang L., Zhao G., et al. (2013). A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS One 8:e81587. 10.1371/journal.pone.0081587
    1. Du L., Tai W., Yang Y., Zhao G., Zhu Q., Sun S., et al. (2016a). Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nat. Commun. 7:13473. 10.1038/ncomms13473
    1. Du L., Tai W., Zhou Y., Jiang S. (2016b). Vaccines for the prevention against the threat of MERS-CoV. Expert. Rev. Vaccines 15 1123–1134. 10.1586/14760584.2016.1167603
    1. Du L., Yang Y., Zhou Y., Lu L., Li F., Jiang S. (2017). MERS-CoV spike protein: a key target for antivirals. Expert. Opin. Ther. Targets 21 131–143. 10.1080/14728222.2017.1271415
    1. Dutry I., Yen H. L., Lee H., Peiris M., Jaume M. (2011). Antibody-dependent enhancement (ADE) of infection and its possible role in the pathogenesis of influenza. BMC Proc. 5(Suppl. 1):P62 10.1186/1753-6561-5-S1-P62
    1. Falzarano D., de Wit E., Feldmann F., Rasmussen A. L., Okumura A., Peng X., et al. (2014). Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog. 10:e1004250. 10.1371/journal.ppat.1004250
    1. Fan C., Wu X., Liu Q., Li Q., Liu S., Lu J., et al. (2018). A human DPP4-knockin mouse’s susceptibility to infection by authentic and pseudotyped MERS-CoV. Viruses 10:E448. 10.3390/v10090448
    1. Fausther-Bovendo H., Kobinger G. P. (2014). Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum. Vaccines Immunother. 10 2875–2884. 10.4161/hv.29594
    1. Ferraro B., Morrow M. P., Hutnick N. A., Shin T. H., Lucke C. E., Weiner D. B. (2011). Clinical applications of DNA vaccines: current progress. Clin. Infect. Dis. 53 296–302. 10.1093/cid/cir334
    1. Fett C., DeDiego M. L., Regla-Nava J. A., Enjuanes L., Perlman S. (2013). Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J. Virol. 87 6551–6559. 10.1128/jvi.00087-13
    1. Gerdts V., Littel-van den Hurk S. V. D., Griebel P. J., Babiuk L. A. (2007). Use of animal models in the development of human vaccines. Future Microbio. 2 667–675. 10.2217/17460913.2.6.667
    1. Gerdts V., Wilson H. L., Meurens F., van Drunen Littel-van den Hurk S., Wilson D., Walker S., et al. (2015). Large animal models for vaccine development and testing. ILAR J. 56 53–62. 10.1093/ilar/ilv009
    1. Goldstein S. A., Weiss S. R. (2017). Origins and pathogenesis of middle east respiratory syndrome-associated coronavirus: recent advances. F1000Res 6:1628. 10.12688/f1000research.11827.1
    1. Gossner C., Danielson N., Gervelmeyer A., Berthe F., Faye B., Kaasik Aaslav K., et al. (2016). Human-dromedary camel interactions and the risk of acquiring zoonotic middle east respiratory syndrome coronavirus infection. Zoonoses Public Health 63 1–9. 10.1111/zph.12171
    1. Guo X., Deng Y., Chen H., Lan J., Wang W., Zou X., et al. (2015). Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology 145 476–484. 10.1111/imm.12462
    1. Haagmans B. L., van den Brand J. M., Provacia L. B., Raj V. S., Stittelaar K. J., Getu S., et al. (2015). Asymptomatic middle east respiratory syndrome coronavirus infection in rabbits. J. Virol. 89 6131–6135. 10.1128/JVI.00661-615
    1. Haagmans B. L., van den Brand J. M., Raj V. S., Volz A., Wohlsein P., Smits S. L., et al. (2016). An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science 351 77–81. 10.1126/science.aad1283
    1. Hakoum M. B., Jouni N., Abou-Jaoude E. A., Hasbani D. J., Abou-Jaoude E. A., Lopes L. C., et al. (2017). Characteristics of funding of clinical trials: cross-sectional survey and proposed guidance. BMJ Open 7:e015997. 10.1136/bmjopen-2017-015997
    1. Hashem A. M., Algaissi A., Agrawal A., Al-Amri S. S., Alhabbab R. Y., Sohrab S. S., et al. (2019). A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model. J. Infect. Dis. 26:jiz137. 10.1093/infdis/jiz137
    1. He Y., Li J., Li W., Lustigman S., Farzan M., Jiang S. (2006). Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. J. Immunol. 176 6085–6092. 10.4049/jimmunol.176.10.6085
    1. Jaume M., Yip M. S., Kam Y. W., Cheung C. Y., Kien F., Roberts A., et al. (2012). SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Hong Kong Med. J. 18(Suppl. 2), 31–36.
    1. Jiaming L., Yanfeng Y., Yao D., Yawei H., Linlin B., Baoying H., et al. (2017). The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine 35 10–18. 10.1016/j.vaccine.2016.11.064
    1. Jung S. Y., Kang K. W., Lee E. Y., Seo D. W., Kim H. L., Kim H., et al. (2018). Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against middle east respiratory syndrome coronavirus. Vaccine 36 3468–3476. 10.1016/j.vaccine.2018.04.082
    1. Kaech S. M., Ahmed R. (2001). Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2 415–422. 10.1038/87720
    1. Kam Y. W., Kien F., Roberts A., Cheung Y. C., Lamirande E. W., Vogel L., et al. (2007). Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro. Vaccine 25 729–740. 10.1016/j.vaccine.2006.08.011
    1. Kim E., Okada K., Kenniston T., Raj V. S., AlHajri M. M., Farag E. A., et al. (2014). Immunogenicity of an adenoviral-based middle east respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine 32 5975–5982. 10.1016/j.vaccine.2014.08.058
    1. Kim Y. S., Son A., Kim J., Kwon S. B., Kim M. H., Kim P., et al. (2018). Chaperna-mediated assembly of ferritin-based middle east respiratory syndrome-coronavirus nanoparticles. Front. Immunol. 9:1093. 10.3389/fimmu.2018.01093
    1. Kuzmina N. A., Younan P., Gilchuk P., Santos R. I., Flyak A. I., Ilinykh P. A., et al. (2018). Antibody-dependent enhancement of ebola virus infection by human antibodies isolated from survivors. Cell Rep. 24 1802.e5–1815.e5. 10.1016/j.celrep.2018.07.035
    1. Lan J., Deng Y., Chen H., Lu G., Wang W., Guo X., et al. (2014). Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the middle east respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PLoS One 9:e112602. 10.1371/journal.pone.0112602
    1. Lan J., Deng Y., Song J., Huang B., Wang W., Tan W. (2018). Significant spike-specific IgG and neutralizing antibodies in mice induced by a novel chimeric virus-iike particle vaccine candidate for middle east respiratory syndrome coronavirus. Virol. Sin. 33 453–455. 10.1007/s12250-018-0064-68
    1. Lan J., Yao Y., Deng Y., Chen H., Lu G., Wang W., et al. (2015). Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against middle east respiratory syndrome coronavirus challenge. EBioMedicine 2 1438–1446. 10.1016/j.ebiom.2015.08.031
    1. Lauring A. S., Jones J. O., Andino R. (2010). Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 28 573–579. 10.1038/nbt.1635
    1. Ledwith B. J., Manam S., Troilo P. J., Barnum A. B., Pauley C. J., Griffiths T. G., et al. (2000). Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev. Biol. 104 33–43.
    1. Leitner W. W., Ying H., Restifo N. P. (1999). DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18 765–777. 10.1016/s0264-410x(99)00271-6
    1. Lin J. T., Zhang J. S., Su N., Xu J. G., Wang N., Chen J. T., et al. (2007). Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 12 1107–1113.
    1. Liu R. Q., Ge J. Y., Wang J. L., Shao Y., Zhang H. L., Wang J. L., et al. (2017). Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. J. Integrat. Agri. 16 2264–2273. 10.1016/S2095-3119(17)6166061665
    1. Liu R., Wang J., Shao Y., Wang X., Zhang H., Shuai L., et al. (2018). A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral. Res. 150 30–38. 10.1016/j.antiviral.2017.12.007
    1. Ma C., Li Y., Wang L., Zhao G., Tao X., Tseng C. T. K., et al. (2014a). Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine 32 2100–2108. 10.1016/j.vaccine.2014.02.004
    1. Ma C., Wang L., Tao X., Zhang N., Yang Y., Tseng C. K., et al. (2014b). Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design. Vaccine 32 6170–6176. 10.1016/j.vaccine.2014.08.086
    1. MacLeod M. K. L., Kappler J. W., Marrack P. (2010). Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 130 10–15. 10.1111/j.1365-2567.2010.03260.x
    1. Malczyk A. H., Kupke A., Prufer S., Scheuplein V. A., Hutzler S., Kreuz D., et al. (2015). A highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J. Virol. 89 11654–11667. 10.1128/JVI.01815-1815
    1. Memish Z. A., Cotten M., Meyer B., Watson S. J., Alsahafi A. J., Al Rabeeah A. A., et al. (2014). Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg. Infect. Dis. 20 1012–1015. 10.3201/eid2006.140402
    1. Menachery V. D., Gralinski L. E., Mitchell H. D., Dinnon K. H., 3rd, Leist S. R., Yount B. L., et al. (2017). Middle east respiratory syndrome coronavirus nonstructural protein 16 Is necessary for interferon resistance and viral pathogenesis. mSphere 2:e00346-17.
    1. Moss B., Smith G. L., Gerin J. L., Purcell R. H. (1984). Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature 311 67–69. 10.1038/311067a0
    1. Munster V. J., de Wit E., Feldmann H. (2013). Pneumonia from human coronavirus in a macaque model. N. Engl. J. Med. 368 1560–1562. 10.1056/NEJMc1215691
    1. Munster V. J., Wells D., Lambe T., Wright D., Fischer R. J., Bushmaker T., et al. (2017). Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. NPJ Vaccines 2:28. 10.1038/s41541-017-0029-21
    1. Murata K., Lechmann M., Qiao M., Gunji T., Alter H. J., Liang T. J. (2003). Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc. Natl. Acad. Sci. U.S.A. 100 6753–6758. 10.1073/pnas.1131929100
    1. Muthumani K., Falzarano D., Reuschel E.L., Tingey C., Flingai S., Villarreal D.O., et al. (2015). A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against middle east respiratory syndrome coronavirus in nonhuman primates. Sci. Trans. Med. 7:301ra132. 10.1126/scitranslmed.aac7462
    1. National Institutes of Health [NIH] (2016). Phase I, Open Label Dose Ranging Safety Study of GLS-5300 in Healthy Volunteers.Available at: (accessed February 25, 2019).
    1. National Institutes of Health [NIH] (2018a). Evaluate the Safety, Tolerability and Immunogenicity Study of GLS-5300 in Healthy Volunteers.Available at: (accessed June 2019).
    1. National Institutes of Health [NIH] (2018b). Safety and Immunogenicity of a Candidate MERS-CoV Vaccine (MERS001).Available at: (accessed February 25, 2019).
    1. National Institutes of Health [NIH] (2018c). Safety, Tolerability and Immunogenicity of Vaccine Candidate MVA-MERS-S. Available at: (accessed February 25, 2019).
    1. Nyon M. P., Du L., Tseng C. K., Seid C. A., Pollet J., Naceanceno K. S., et al. (2018). Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine 36 1853–1862. 10.1016/j.vaccine.2018.02.065
    1. Oh M. -D., Park W. B., Park S. -W., Choe P. G., Bang J. H., Song K. -H., et al. (2018). Middle east respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J. Int. Med. 33 233–246. 10.3904/kjim.2018.031
    1. Okba N. M., Raj V. S., Haagmans B. L. (2017). Middle east respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr. Opin. Virol. 23 49–58. 10.1016/j.coviro.2017.03.007
    1. Ong H. K., Tan W. S., Ho K. L. (2017). Virus like particles as a platform for cancer vaccine development. PeerJ 5:e4053. 10.7717/peerj.4053
    1. Pallesen J., Wang N., Corbett K. S., Wrapp D., Kirchdoerfer R. N., Turner H. L., et al. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. U.S.A. 114 E7348–E7357. 10.1073/pnas.1707304114
    1. Pascal K. E., Coleman C. M., Mujica A. O., Kamat V., Badithe A., Fairhurst J., et al. (2015). Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection. Proc. Natl. Acad. Sci. U.S.A. 112 8738–8743. 10.1073/pnas.1510830112
    1. Payne D. C., Iblan I., Rha B., Alqasrawi S., Haddadin A., Al Nsour M., et al. (2016). Persistence of antibodies against middle east respiratory syndrome coronavirus. Emerg. Infect. Dis. 22 1824–1826. 10.3201/eid2210.160706
    1. Perlman S., Vijay R. (2016). Middle east respiratory syndrome vaccines. Int. J. Infect. Dis. 47 23–28. 10.1016/j.ijid.2016.04.008
    1. Prescott J., Falzarano D., de Wit E., Hardcastle K., Feldmann F., Haddock E., et al. (2018). Pathogenicity and viral shedding of MERS-CoV in immunocompromised rhesus macaques. Front. Immunol. 9:205. 10.3389/fimmu.2018.00205
    1. Quan F. S., Compans R. W., Nguyen H. H., Kang S. M. (2008). Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J. Virol. 82 1350–1359. 10.1128/jvi.01615-1617
    1. Schindewolf C., Menachery V. D. (2019). Middle east respiratory syndrome vaccine candidates: cautious optimism. Viruses 11:E74. 10.3390/v11010074
    1. Scobey T., Yount B. L., Sims A. C., Donaldson E. F., Agnihothram S. S., Menachery V. D., et al. (2013). Reverse genetics with a full-length infectious cDNA of the middle east respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. U.S.A. 110 16157–16162. 10.1073/pnas.1311542110
    1. Shi J., Zhang J., Li S., Sun J., Teng Y., Wu M., et al. (2015). Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. PLoS One 10:e0144475. 10.1371/journal.pone.0144475
    1. Sibal L. R., Samson K. J. (2001). Nonhuman primates: a critical role in current disease research. ILAR J. 42 74–84. 10.1093/ilar.42.2.74.
    1. Smith R. (2000). Vaccines and medicines for the world’s poorest. Public-private partnerships seem to be essential. BMJ 320 952–953. 10.1136/bmj.320.7240.952
    1. Song F., Fux R., Provacia L. B., Volz A., Eickmann M., Becker S., et al. (2013). Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J. Virol. 87 11950–11954. 10.1128/JVI.01672-1613
    1. Srivastava S., Kamthania M., Singh S., Saxena A. K., Sharma N. (2018). Structural basis of development of multi-epitope vaccine against middle east respiratory syndrome using in silico approach. Infect. Drug Resist. 11 2377–2391. 10.2147/idr.s175114
    1. Swearengen J. R. (2018). Choosing the right animal model for infectious disease research. Animal Model Exp. Med. 1 100–108. 10.1002/ame2.12020
    1. Tai W., Wang Y., Fett C. A., Zhao G., Li F., Perlman S., et al. (2017). Recombinant receptor-binding domains of multiple middle east respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants. J. Virol. 91:e01651-16. 10.1128/JVI.01651-1616
    1. Tai W., Zhao G., Sun S., Guo Y., Wang Y., Tao X., et al. (2016). A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virol 499 375–382. 10.1016/j.virol.2016.10.005
    1. Tang F., Quan Y., Xin Z. T., Wrammert J., Ma M. J., Lv H., et al. (2011). Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186 7264–7268. 10.4049/jimmunol.0903490
    1. Tang J., Zhang N., Tao X., Zhao G., Guo Y., Tseng C. T., et al. (2015). Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum. Vaccin. Immunother. 11 1244–1250. 10.1080/21645515.2015.1021527
    1. Tang X. -C., Agnihothram S. S., Jiao Y., Stanhope J., Graham R. L., Peterson E. C., et al. (2014). Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc. Natl. Acad. Sci. U.S.A. 111:E2018. 10.1073/pnas.1402074111
    1. Ura T., Okuda K., Shimada M. (2014). Developments in viral vector-based vaccines. Vaccines 2 624–641. 10.3390/vaccines2030624
    1. van Boheemen S., de Graaf M., Lauber C., Bestebroer T. M., Raj V. S., Zaki A. M., et al. (2012). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3:e00473-12 10.1128/mBio.00473-412
    1. van Doremalen N., Falzarano D., Ying T., de Wit E., Bushmaker T., Feldmann F., et al. (2017). Efficacy of antibody-based therapies against middle east respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Res. 143 30–37. 10.1016/j.antiviral.2017.03.025
    1. van Doremalen N., Munster V. J. (2015). Animal models of middle east respiratory syndrome coronavirus infection. Antiviral Res. 122 28–38. 10.1016/j.antiviral.2015.07.005
    1. Veit S., Jany S., Fux R., Sutter G., Volz A. (2018). CD8+ T cells responding to the middle east respiratory syndrome coronavirus nucleocapsid protein delivered by vaccinia virus MVA in mice. Viruses 10:718. 10.3390/v10120718
    1. Volz A., Kupke A., Song F., Jany S., Fux R., Shams-Eldin H., et al. (2015). Protective efficacy of recombinant modified vaccinia virus ankara delivering middle east respiratory syndrome coronavirus spike glycoprotein. J. Virol. 89 8651–8656. 10.1128/JVI.00614-615
    1. Wang C., Zheng X., Gai W., Wong G., Wang H., Jin H., et al. (2017a). Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Res. 140 55–61. 10.1016/j.antiviral.2016.12.019
    1. Wang C., Zheng X., Gai W., Zhao Y., Wang H., Wang H., et al. (2017b). MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget 8 12686–12694.
    1. Wang L., Shi W., Joyce M. G., Modjarrad K., Zhang Y., Leung K., et al. (2015a). Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun. 6:7712. 10.1038/ncomms8712
    1. Wang Y., Liu D., Shi W., Lu R., Wang W., Zhao Y., et al. (2015b). Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the rirst imported case in China: phylogenetics and coalescence analysis. MBio 6 e1280–15. 10.1128/mBio.01280-1215
    1. Wang Y., Tai W., Yang J., Zhao G., Sun S., Tseng C. K., et al. (2017c). Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection. Hum. Vaccin. Immunother. 13 1615–1624. 10.1080/21645515.2017.1296994
    1. Weingartl H., Czub M., Czub S., Neufeld J., Marszal P., Gren J., et al. (2004). Immunization with modified vaccinia virus ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78:12672. 10.1128/JVI.78.22.12672-12676.2004
    1. World Health Organization [WHO] (2019a). MERS Situation Update.Available at: (accessed May 2019).
    1. World Health Organization [WHO] (2019b). Middle East Respiratory Syndrome Coronavirus (MERS-CoV).Available at: (accessed May 2019).
    1. Wirblich C., Coleman C. M., Kurup D., Abraham T. S., Bernbaum J. G., Jahrling P. B., et al. (2017). One-Health: a safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies Virus. J. Virol. 91 e02040-16
    1. Xie Q., He X., Yang F., Liu X., Li Y., Liu Y., et al. (2018). Analysis of the genome sequence and prediction of B-Cell epitopes of the envelope protein of middle east respiratory syndrome-coronavirus. IEEE/ACM Trans. Comput. Biol. Bioinf. 15 1344–1350. 10.1109/tcbb.2017.2702588
    1. Yang Z. -Y., Kong W. -P., Huang Y., Roberts A., Murphy B. R., Subbarao K., et al. (2004). A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428 561–564. 10.1038/nature02463
    1. Yeung M. L., Yao Y., Jia L., Chan J. F., Chan K. H., Cheung K. F., et al. (2016). MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat. Microbiol. 1:16004. 10.1038/nmicrobiol.2016.4
    1. Yip M. S., Cheung C. Y., Li P. H., Bruzzone R., Peiris J. S. M., Jaume M. (2011). Investigation of antibody-dependent enhancement (ADE) of SARS coronavirus infection and its role in pathogenesis of SARS. BMC Proc. 5(Suppl. 1):P80.
    1. Yong C. Y., Yeap S. K., Goh Z. H., Ho K. L., Omar A. R., Tan W. S. (2015a). Induction of humoral and cell-mediated immune responses by hepatitis B virus epitope displayed on the virus-Like particles of prawn nodavirus. Appl. Environ. Microbiol. 81 882–889. 10.1128/AEM.03695-3614
    1. Yong C. Y., Yeap S. K., Ho K. L., Omar A. R., Tan W. S. (2015b). Potential recombinant vaccine against influenza A virus based on M2e displayed on nodaviral capsid nanoparticles. Int. J. Nanomed. 10 2751–2763. 10.2147/IJN.S77405
    1. Yu P., Xu Y., Deng W., Bao L., Huang L., Xu Y., et al. (2017). Comparative pathology of rhesus macaque and common marmoset animal models with middle east respiratory syndrome coronavirus. PLoS One 12:e0172093. 10.1371/journal.pone.0172093
    1. Zaki A. M., Van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367 1814–1820. 10.1056/NEJMoa121172
    1. Zhang N., Channappanavar R., Ma C., Wang L., Tang J., Garron T., et al. (2016). Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against middle east respiratory syndrome coronavirus. Cell Mol. Immunol. 13 180–190. 10.1038/cmi.2015.03
    1. Zhao J., Alshukairi A. N., Baharoon S. A., Ahmed W. A., Bokhari A. A., Nehdi A. M., et al. (2017). Recovery from the middle east respiratory syndrome is associated with antibody and T-cell responses. Sci. Immunol. 2:eaan5393 10.1126/sciimmunol.aan5393
    1. Zhao J., Li K., Wohlford-Lenane C., Agnihothram S. S., Fett C., Zhao J., et al. (2014). Rapid generation of a mouse model for middle east respiratory syndrome. Proc. Natl. Acad. Sci. U.S.A. 111 4970–4975. 10.1073/pnas.1323279111
    1. Zhao J., Perera R. A., Kayali G., Meyerholz D., Perlman S., Peiris M. (2015). Passive immunotherapy with dromedary immune serum in an experimental animal model for middle east respiratory syndrome coronavirus infection. J. Virol. 89 6117–6120. 10.1128/JVI.00446-415
    1. Zhao J., Zhao J., Mangalam A. K., Channappanavar R., Fett C., Meyerholz D. K., et al. (2016). Airway Memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44 1379–1391. 10.1016/j.immuni.2016.05.006

Source: PubMed

3
Sottoscrivi