Eugenol as a Promising Molecule for the Treatment of Dermatitis: Antioxidant and Anti-inflammatory Activities and Its Nanoformulation

Amanda de Araújo Lopes, Francisco Noé da Fonseca, Talita Magalhães Rocha, Lyara Barbosa de Freitas, Emmanuel Vinicius Oliveira Araújo, Deysi Viviana Tenazoa Wong, Roberto César Pereira Lima Júnior, Luzia Kalyne Almeida Moreira Leal, Amanda de Araújo Lopes, Francisco Noé da Fonseca, Talita Magalhães Rocha, Lyara Barbosa de Freitas, Emmanuel Vinicius Oliveira Araújo, Deysi Viviana Tenazoa Wong, Roberto César Pereira Lima Júnior, Luzia Kalyne Almeida Moreira Leal

Abstract

Contact dermatitis produces an inflammatory reaction primarily via stimulation of keratinocytes and cells of the immune system, which promote the release of cytokines, reactive oxygen species (ROS), and other chemical mediators. Eugenol (EUG, phenylpropanoid of essential oils) has attracted attention due to its anti-inflammatory properties, as well as antioxidant effect. On the other hand, it is volatile and insoluble and is a skin irritant. In this case, nanostructured systems have been successfully employed as a drug carrier for skin diseases since they improve both biological and pharmaceutical properties of active compounds. The cytotoxic, antioxidant, and anti-inflammatory effects of EUG were assessed in human neutrophils and keratinocytes. Additionally, polymeric nanocarries (NCEUG) were prepared to improve the chemical and irritant characteristics of EUG. EUG presented apparent safety and antioxidant and anti-inflammatory effects on human neutrophils, but presented cytotoxic effects on keratinocytes. However, the nanocapsules were able to reduce its cytotoxicity. An in vivo experiment of irritant contact dermatitis (ICD) in mice induced by TPA showed that NCEUG reduced significantly the ear edema in mice when compared to the EUG solution, as well as the leukocyte infiltration and IL-6 level, possibly due to better skin permeation and irritancy blockage. These findings suggest that EUG is a promising bioactive molecule, and its nanoencapsulation seems to be an interesting approach for the treatment of ICD.

Figures

Figure 1
Figure 1
Evaluation of EUG toxicity on MTT test in human neutrophils. Data from three to eight samples. The control group consists of cells treated with vehicle (DMSO 1%). Triton X-100 (Tx, 0.02%) was used as cytotoxic standard. ∗vs. HBSS: nontreated cells. p < 0.05 (ANOVA and Tukey as the post hoc test).
Figure 2
Figure 2
Effect of EUG on the percentage of measurement of membrane integrity of human neutrophils as monitored by flow cytometry using the sensitive fluorochrome propidium iodide. Neutrophils were cultured for 30 min in the presence of EUG at various concentrations (10–50 μg/mL). Values are presented as means ± SEM of 3 separated experiments in triplicate and by analysis of 10,000 events. The control group consists of cells treated with vehicle (DMSO 1%). ∗vs. HBSS: nontreated cells. p < 0.001 (ANOVA and Tukey as the post hoc test).
Figure 3
Figure 3
Effects of eugenol (EUG) on the release of human neutrophil myeloperoxidase (MPO) stimulated by phorbol myristate acetate (PMA). Freshly isolated cells (2.5 × 106) were preincubated with indicated concentrations of EUG prior to the addition of PMA (0.1 μg/mL). Indomethacin (36 μg/mL) was used as positive control. Data are expressed as percentages of inhibition by EUG on the release of MPO. Numbers represent mean ± SEM. Data from three to eight samples.
Figure 4
Figure 4
Evaluation of antioxidant activity of EUG in human neutrophils by chemiluminescence (CL). The inhibitory effect of EUG in human neutrophil oxidative metabolism was assessed by luminol (LumCL) (a) or lucigenin (LucCL) (b). Data from three to eight samples. ∗vs. control (DMSO), p < 0.05, and ∗∗∗vs. control (DMSO), p < 0.001 (ANOVA and Tukey as the post hoc test).
Figure 5
Figure 5
Size distribution by photon correlation spectroscopy of the eugenol-loaded nanocapsules (NCEUG) and the blank formulation (NCB).
Figure 6
Figure 6
Evaluation of EUG and NCEUG toxicity on MTT test for 24 hours, 48 hours, and 72 hours in human neutrophils. Data from two to eight samples. The control group consists of cells treated with vehicle (DMSO 1%). ∗vs. DMEM: untreated cells. p < 0.05 (ANOVA and Tukey as the post hoc test).
Figure 7
Figure 7
Effects from EUG and NCEUG on TPA-induced acute edema in mice. Swiss mice (25 to 30 g) were treated topically with EUG or NCEUG (0.04, 0.08, and 0.16 mg/ear), NCB (blank formulations), dexamethasone (DEXA; 0.05 mg/ear), or acetone (vehicle control) with topical application of TPA (2.5 μg/ear) on the surface of the left ear of mice. Values represent mean ± SEM from 8 animals per group. a vs. the normal group; b vs. control; c vs. NCB group; p < 0.05 (ANOVA and Tukey's test).
Figure 8
Figure 8
Effect of EUG on myeloperoxidase activity induced by TPA in mice. Swiss mice (25 to 30 g) were treated topically with EUG or NCEUG (0.04, 0.08, and 0.16 mg/ear), dexamethasone (DEXA; 0.05 mg/ear), or acetone (vehicle control) with topical application of TPA (2.5 μg/ear) on the surface of the left ear of mice. Values represent mean ± SEM the amount of MPO in U/mL. 8 animals were used per group. a vs the normal group; b vs control group; c vs NCB; p < 0.05 (ANOVA and Tukey's test).
Figure 9
Figure 9
Antiedematogenic activity from EUG and NCEUG induced by TPA in mice. Swiss mice (25 to 30 g) were treated topically with EUG or NCEUG (0.04, 0.08, and 0.16 mg/ear), NCB (blank formulations), dexamethasone (DEXA; 0.05 mg/ear), or acetone (vehicle control) with topical application of TPA (2.5 μg/ear) on the surface of the left ear of mice. Values represent mean ± SEM from 8 animals per group. a vs the normal group; b vs control; c vs NCB group; p < 0.05 (ANOVA and Tukey's test).
Figure 10
Figure 10
The effect of NCEUG from EUG and NCEUG on IL-6 (a) and KC (b) levels in ear tissue homogenates induced by TPA in mice. Swiss mice (25 to 30 g) were treated topically with EUG or NCEUG (0.04, 0.08, and 0.16 mg/ear), NCB (blank formulations), dexamethasone (DEXA; 0.05 mg/ear), or acetone (vehicle control) with topical application of TPA (2.5 μg/ear) on the surface of the left ear of mice. Values represent mean ± SEM from 8 animals per group. ∗vs control group; p < 0.05 (ANOVA and Dunnett's test).

References

    1. Diepgen T. L., Coenrads P. J. The epidemiology of occupational contact dermatitis. In: Kanerva L., Elsner P., Wahlberg J. E., Maibach H. I., editors. Handbook of Occupational Dermatology. Berlin, Heidelberg: Springer; 2000. pp. 3–16.
    1. Lachapelle J. M., Marot L. Histopathological and immunohistopathological features of irritant and allergic contact dermatitis. In: Johansen J., Frosch P., Lepoittevin J. P., editors. Contact Dermatitis. Berlin, Heidelberg: Springer; 2011. pp. 167–176.
    1. Corsini E., Galli C. L. Cytokines and irritant contact dermatitis. Toxicology Letters. 1998;102-103:277–282. doi: 10.1016/S0378-4274(98)00323-3.
    1. Willis C. M., Reiche L., Wilkinson J. D. Immunocytochemical demonstration of reduced Cu,Zn-superoxide dismutase levels following topical application of dithranol and sodium lauryl sulphate: an indication of the role of oxidative stress in acute irritant contact dermatitis. European Journal of Dermatology. 1998;1:8–12.
    1. Ji H., Li X. K. Oxidative stress in atopic dermatitis. Oxidative Medicine and Cellular Longevity. 2016;2016:8. doi: 10.1155/2016/2721469.2721469
    1. Kaur S., Zilmer M., Eisen M., Kullisaar T., Rehema A., Vihalemm T. Patients with allergic and irritant contact dermatitis are characterized by striking change of iron and oxidized glutathione status in nonlesional area of the skin. Journal of Investigative Dermatology. 2001;116(6):886–890. doi: 10.1046/j.0022-202x.2001.01374.x.
    1. Mantovani A., Cassatella M. A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology. 2011;11(8):519–531. doi: 10.1038/nri3024.
    1. Mittal M., Siddiqui M. R., Tran K., Reddy S. P., Malik A. B. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling. 2014;20(7):1126–1167. doi: 10.1089/ars.2012.5149.
    1. Cohen D. E., Heidary N. Treatment of irritant and allergic contact dermatitis. Dermatologic Therapy. 2004;17(4):334–340. doi: 10.1111/j.1396-0296.2004.04031.x.
    1. Xu J. G., Liu T., Hu Q. P., Cao X. M. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules. 2016;21(9):1194–1206. doi: 10.3390/molecules21091194.
    1. Chami F., Chami N., Bennis S., Bouchikhi T., Remmal A. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytotherapy Research. 2005;19(5):405–408. doi: 10.1002/ptr.1528.
    1. Gayoso C. W., Lima E. O., Olivera V. T., et al. Sensitivity of fungi isolated from onychomycosis to Eugenia cariophyllata essential oil and eugenol. Fitoterapia. 2005;76:247–249. doi: 10.1016/j.fitote.2004.12.005.
    1. Kim H. M., Lee E. H., Hong S. H., et al. Effect of Syzygium aromaticum extract on immediate hypersensitivity in rats. Journal of Ethnopharmacology. 1998;60(2):125–131. doi: 10.1016/s0378-8741(97)00143-8.
    1. Corrêa M. F. P., Melo G. O., Costa S. S. Substâncias de origem vegetal potencialmente úteis na terapia da Asma. Revista Brasileira de Farmacognosia. 2008;18:785–797. doi: 10.1590/S0102-695X2008000500025.
    1. Pan C., Dong Z. Antiasthmatic effects of eugenol in a mouse model of allergic asthma by regulation of vitamin D3 upregulated protein 1/NF-κB pathway. Inflammation. 2015;38(4):1385–1393. doi: 10.1007/s10753-015-0110-8.
    1. Mnafgui K., Hajji R., Derbali F., et al. Anti-inflammatory, antithrombotic and cardiac remodeling preventive effects of eugenol in isoproterenol-induced myocardial infarction in Wistar rat. Cardiovascular Toxicology. 2016;16(4):336–344. doi: 10.1007/s12012-015-9343-x.
    1. Yao Z., Namkung W., Ko E. A., Park J., Tradtrantip L., Verkman A. S. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-activated Cl− channel TMEM16A. PLoS One. 2012;7(5, article e38030) doi: 10.1371/journal.pone.0038030.
    1. Yogalakshmi B., Viswanathan P., Anuradha C. V. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology. 2010;268(3):204–212. doi: 10.1016/j.tox.2009.12.018.
    1. Daniel A. N., Sartoretto S. M., Schmidt G., Caparroz-Assef S. M., Bersani-Amado C. A., RKN C. Anti-inflammatory and antinociceptive activities of eugenol essential oil in experimental animal models. Revista Brasileira de Farmacognosia. 2009;19(1b):212–217. doi: 10.1590/s0102-695x2009000200006.
    1. Kim S. S., Oh O. J., Min H. Y., et al. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sciences. 2003;73:337–348. doi: 10.1016/s0024-3205(03)00288-1.
    1. Raghavenra H., Diwakr B. T., Lokesh B. R., Naidu K. A. Eugenol—the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2006;74(1):23–27. doi: 10.1016/j.plefa.2005.08.006.
    1. Bachiega T. F., Sousa J. P., Bastos J. K., Sforcin J. M. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. Journal of Pharmacy and Pharmacology. 2012;64(4):610–616. doi: 10.1111/j.2042-7158.2011.01440.x.
    1. Fireman S., Toledano O., Neimann K., Loboda N., Dayan N. A look at emerging delivery systems for topical drug products. Dermatologic Therapy. 2011;24(5):477–488. doi: 10.1111/j.1529-8019.2012.01464.x.
    1. Contri R. V., Frank L. A., Kaiser M., Pohlmann A. R., Guterres S. S. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. International Journal of Nanomedicine. 2014;9:951–962. doi: 10.2147/ijn.s56579.
    1. Siqueira N. M., Contri R. V., Paese K., RCR B., Pohlman A. R., Guterres S. S. Innovative sunscreen formulation based on benzophenone-3-loaded chitosan-coated polymeric nanocapsules. Skin Pharmacology and Physiology. 2011;24(3):166–174. doi: 10.1159/000323273.
    1. Varani J., Perone P., Spahlinger D. M., et al. Human skin in organ culture and human skin cells (keratinocytes and fibroblasts) in monolayer culture for assessment of chemically induced skin damage. Toxicologic Pathology. 2007;35(5):693–701. doi: 10.1080/01926230701481907.
    1. Frank L. A., Sandri G., Dautilia F., et al. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. International Journal of Nanomedicine. 2014;9:3151–3161. doi: 10.2147/ijn.s62599.
    1. Lucisano Y. M., Mantovani B. Lysosomal enzyme release from polymorphonuclear leukocytes induced by immunecomplexes of IgM and IgG. The Journal of Immunology. 1984;132(4):2015–2020.
    1. Kabeya L. M., Kanashiro A., Azzolini A. E. C. S., Soriani F. M., JLC L., Lucisano-Valim Y. M. Inhibitory effect of eight simple coumarins on the lucigenin enhanced chemiluminescence of rabbit neutrophils. Research communications in molecular pathology and pharmacology. 2002;111:103–114.
    1. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4.
    1. Darzynkiewicz Z., Bruno S., Del Bino G., et al. Features of apoptotic cells measured by flow cytometry. Cytometry. 1982;13(8):795–808. doi: 10.1002/cyto.990130802.
    1. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scandinavian Journal of Clinical and Laboratory Investigation. 1968;21:77–89.
    1. Paula F. S., Kabeya L. M., Kanashiro A., et al. Modulation of human neutrophil oxidative metabolism and degranulation by extract of Tamarindus indica L. fruit pulp. Food and Chemical Toxicology. 2009;47(1):163–170. doi: 10.1016/j.fct.2008.10.023.
    1. Fessi H., Puisieux F., Devissaguet J. P., Ammoury N., Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics. 1989;55(1):R1–R4. doi: 10.1016/0378-5173(89)90281-0.
    1. Flores F. C., Ribeiro R. F., Ourique A. F., CMB R., Silva C. B. Nanostructured systems containing an essential oil: protection against volatilization. Química Nova. 2011;34(6):968–972. doi: 10.1590/s0100-40422011000600010.
    1. Yun S. M., Lee M. H., Lee K. J., Ku H. O., Son S. W., Joo Y. S. Quantitative analysis of eugenol in clove extract by a validated HPLC method. Journal of AOAC International. 2010;93(6):1806–1810.
    1. Marchal-Heussler L., Maicent P., Hoffman M., Spittler J., Couvreur P. Antiglaucomatous activity of betaxolol chlorhydrate sorbed onto different isobutylcyanoacrylate nanoparticle preparations. International Journal of Pharmaceutics. 1990;58(2):115–122. doi: 10.1016/0378-5173(90)90248-3.
    1. Recio M. C., Giner R. M., Uriburu L., et al. In vivo activity of pseudoguaianolide sesquiterpene lactones in acute and chronic inflammation. Life Sciences. 2000;66(26):2509–2518. doi: 10.1016/S0024-3205(00)00585-3.
    1. De Young L. M., Kheifets J. B., Ballaron S. J., Young J. M. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and Actions. 1989;26(3-4):335–341. doi: 10.1007/BF01967298.
    1. Safieh-Garabedian B., Poole S., Allchorne A., Winter J., Woolf C. J. Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. British Journal of Pharmacology. 2005;117:1265–1275.
    1. Cunha F. Q., Boukili M. A., da Motta J. I., Vargaftig B. B., Ferreira S. H. Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat. European Journal of Pharmacology. 1993;238(1):47–52. doi: 10.1016/0014-2999(93)90503-A.
    1. Koopman G., Reutelingsperger C. P., Kuijten G. A., Keehnen R. M., Pals S. T., Van Oers M. H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994;84(5):1415–1420.
    1. Thompson D., Constantin-Teodosiu D., Norbeck K., Svensson B., Moldéus P. Metabolic activation of eugenol by myeloperoxidase and polymorphonuclear leukocytes. Chemical Research in Toxicology. 1989;2(3):186–192. doi: 10.1021/tx00009a011.
    1. Weber F. C., Németh T., Csepregi J. Z., et al. Neutrophils are required for both the sensitization and elicitation phase of contact hipersensivity. Journal of Experimental Medicine. 2015;212(1):15–22. doi: 10.1084/jem.20130062.
    1. Sheppard F. R., Kelher M. R., Moore E. E., McLaughlin N. J., Banerjee A., Silliman C. C. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. Journal of Leukocyte Biology. 2005;78(5):1025–1042. doi: 10.1189/jlb.0804442.
    1. Winterbourn C. C. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology. 2002;181-182:223–227. doi: 10.1016/s0300-483x(02)00286-x.
    1. Lau D., Mollnau H., Eiserich J. P., et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(2):431–436. doi: 10.1073/pnas.0405193102.
    1. Edwards S. W. The O−2 generating NADPH oxidase of phagocytes: structure and methods of detection. Methods. 1996;9(3):563–577. doi: 10.1006/meth.1996.0064.
    1. Semenza G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences. 2012;33(4):207–214. doi: 10.1016/j.tips.2012.01.005.
    1. Nakai K., Yoneda K., Kubota Y. Oxidative stress in allergic and irritant dermatitis: from basic research to clinical management. Recent Patents on Inflammation & Allergy Drug Discovery. 2012;6(3):202–209. doi: 10.2174/187221312802652839.
    1. Caldefie-Chezét F., Walrand S., Moinard C., Tridon A., Chassagne J., Vasson M. P. Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clinica Chimica Acta. 2002;319(1):9–17. doi: 10.1016/s0009-8981(02)00015-3.
    1. Baek J., Lee M. G. Oxidative stress and antioxidant strategies in dermatology. Redox Report. 2016;21(4):1–6. doi: 10.1179/1351000215Y.0000000015.
    1. Ogata M., Hoshi M., Urano S., Endo T. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chemical and Pharmaceutical Bulletin. 2000;48(10):1467–1469. doi: 10.1248/cpb.48.1467.
    1. Kalmes M., Neumeyer A., Rio P., Hanenberg H., Fritsche E., Blömeke B. Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT) Biological Chemistry. 2006;387(9):1201–1207. doi: 10.1515/BC.2006.148.
    1. Kalmes M., Blömeke B. Impact of eugenol and isoeugenol on AhR translocation, target gene expression, and proliferation in human HaCaT keratinocytes. Journal of Toxicology and Environmental Health. Part A. 2012;75(8-10):478–491. doi: 10.1080/15287394.2012.674916.
    1. Pohlmann A. R., Fonseca F. N., Paese K., et al. Poly (ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opinion on Drug Delivery. 2013;10(5):623–638. doi: 10.1517/17425247.2013.769956.
    1. SON D., Yirang N., Wan-Seob C., et al. Differentiation of skin sensitizers from irritant chemicals by interleukin-1α and macrophage inflammatory protein-2 in murine keratinocytes. Toxicology Letters. 2013;216(1):65–71. doi: 10.1016/j.toxlet.2012.10.017.
    1. Paese K., Jäger A., Poletto F. S., et al. Semisolid formulation containing a nanoencapsulated sunscreen: effectiveness, in vitro photostability and immune response. Journal of Biomedical Nanotechnology. 2009;5(3):240–246. doi: 10.1166/jbn.2009.1028.
    1. Fontana M. C., Rezer J. F. P., Coradini K., Leal D. B. R., Beck R. C. R. Improved efficacy in the treatment of contact dermatitis in rats by a dermatological nanomedicine containing clobetasol propionate. European Journal of Pharmaceutics and Biopharmaceutics. 2011;79(2):241–249. doi: 10.1016/j.ejpb.2011.05.002.
    1. Dohi T., Terada H., Anamura S., Okamoto H., Tsujimoto A. The anti-inflammatory effects of phenolic dental medicaments as determined by mouse ear edema assay. The Japanese Journal of Pharmacology. 1989;49(4):535–539. doi: 10.1254/jjp.49.535.
    1. Biruss B., Valenta C. Skin permeation of different steroid hormones from polymeric coated liposomal formulations. European Journal of Pharmaceutics and Biopharmaceutics. 2006;62(2):210–219. doi: 10.1016/j.ejpb.2005.08.004.
    1. Kuchler S., Radowski M. R., Blaschke T., et al. Nanoparticles for skin penetration enhancement--a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2009;71(2):243–250.
    1. Lademann J., Richter H., Teichmann A., et al. Nanoparticles – an efficient carrier for drug delivery into the hair follicles. European Journal of Pharmaceutics and Biopharmaceutics. 2007;66(2):159–164. doi: 10.1016/j.ejpb.2006.10.019.
    1. Hussain Z., Katas H., Amin M. C. I. M., Kumolosasi E., Sahudin S. Antidermatitic perspective of hydrocortisone as chitosan nanocarriers: an ex vivo and in vivo assessment using an NC/Nga mouse model. Journal of Pharmaceutical Sciences. 2013;102(3):1063–1075. doi: 10.1002/jps.23446.
    1. Hussain Z., Katas H., MCIM A., Kumolosasi E. Efficient immuno-modulation of TH1/TH2 biomarkers in 2,4-dinitrofluorobenzene-induced atopic dermatitis: nanocarrier-mediated transcutaneous co-delivery of anti-inflammatory and antioxidant drugs. PLoS One. 2014;9(11, article e113143) doi: 10.1371/journal.pone.0113143.

Source: PubMed

3
Sottoscrivi