Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

Tarique Hussain, Bie Tan, Yulong Yin, Francois Blachier, Myrlene C B Tossou, Najma Rahu, Tarique Hussain, Bie Tan, Yulong Yin, Francois Blachier, Myrlene C B Tossou, Najma Rahu

Abstract

Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS) and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs.

Conflict of interest statement

The authors declare no conflict of interests.

Figures

Figure 1
Figure 1
Obesity lifestyle development of chronic diseases through inflammation.
Figure 2
Figure 2
Metabolic pathways involved in arachidonic acid metabolism leading to inflammatory diseases.

References

    1. Ďuračková Z. Some current insights into oxidative stress. Physiological Research. 2010;59(4):459–469.
    1. Kumar S., Pandey A. K. Free radicals: health implications and their mitigation by herbals. British Journal of Medicine and Medical Research. 2015;7(6):438–457. doi: 10.9734/bjmmr/2015/16284.
    1. Goossens V., De Vos K., Vercammen D., et al. Redox regulation of TNF signaling. BioFactors. 1999;10(2-3):145–156. doi: 10.1002/biof.5520100210.
    1. Poyton R. O., Ball K. A., Castello P. R. Mitochondrial generation of free radicals and hypoxic signaling. Trends in Endocrinology and Metabolism. 2009;20(7):332–340. doi: 10.1016/j.tem.2009.04.001.
    1. Hussain S. P., Hofseth L. J., Harris C. C. Radical causes of cancer. Nature Reviews Cancer. 2003;3(4):276–285. doi: 10.1038/nrc1046.
    1. Chang C.-H., Yu F.-Y., Wu T.-S., Wang L.-T., Liu B.-H. Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicological Sciences. 2011;119(1):84–92. doi: 10.1093/toxsci/kfq309.
    1. Wang C., Schuller Levis G. B., Lee E. B., et al. Platycodin D and D3 isolated from the root of Platycodon grandiflorum modulate the production of nitric oxide and secretion of TNF-α in activated RAW 264.7 cells. International Immunopharmacology. 2004;4(8):1039–1049. doi: 10.1016/j.intimp.2004.04.005.
    1. Zhang X., Wang G., Gurley E. C., Zhou H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS ONE. 2014;9(9) doi: 10.1371/journal.pone.0107072.e107072
    1. Jhang J.-J., Lu C.-C., Ho C.-Y., Cheng Y.-T., Yen G.-C. Protective Effects of catechin against monosodium urate-induced inflammation through the modulation of NLRP3 inflammasome activation. Journal of Agricultural and Food Chemistry. 2015;63(33):7343–7352. doi: 10.1021/acs.jafc.5b02605.
    1. Ellis L. Z., Liu W., Luo Y., et al. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion. Biochemical and Biophysical Research Communications. 2011;414(3):551–556. doi: 10.1016/j.bbrc.2011.09.115.
    1. Han S. G., Han S.-S., Toborek M., Hennig B. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicology and Applied Pharmacology. 2012;261(2):181–188. doi: 10.1016/j.taap.2012.03.024.
    1. Tang B., Chen G.-X., Liang M.-Y., Yao J.-P., Wu Z.-K. Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. International Journal of Cardiology. 2015;180:134–141. doi: 10.1016/j.ijcard.2014.11.161.
    1. Newsome B. J., Petriello M. C., Han S. G., et al. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. Journal of Nutritional Biochemistry. 2014;25(2):126–135. doi: 10.1016/j.jnutbio.2013.10.003.
    1. He B., Zhang B., Wu F., et al. Homoplantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome. Journal of Cardiovascular Pharmacology. 2016;67(1):93–101. doi: 10.1097/fjc.0000000000000318.
    1. Fan S.-H., Wang Y.-Y., Lu J., et al. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0089961.e89961
    1. Potapovich A. I., Lulli D., Fidanza P., et al. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway. Toxicology and Applied Pharmacology. 2011;255(2):138–149. doi: 10.1016/j.taap.2011.06.007.
    1. Wang C., Pan Y., Zhang Q.-Y., Wang F.-M., Kong L.-D. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS ONE. 2012;7(6, article e38285) doi: 10.1371/journal.pone.0038285.
    1. Yang S. J., Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism: Clinical and Experimental. 2014;63(5):693–701. doi: 10.1016/j.metabol.2014.02.003.
    1. Aruna R., Geetha A., Suguna P. Rutin modulates ASC expression in NLRP3 inflammasome: a study in alcohol and cerulein-induced rat model of pancreatitis. Molecular and Cellular Biochemistry. 2014;396(1-2):269–280. doi: 10.1007/s11010-014-2162-8.
    1. Arivazhagan L., Subramanian S. P. Tangeretin, a citrus flavonoid attenuates oxidative stress and protects hepatocellular architecture in rats with 7, 12-dimethylbenz (a) anthracene induced experimental mammary carcinoma. Journal of Functional Foods. 2015;15:339–353. doi: 10.1016/j.jff.2015.03.041.
    1. Kumar S., Pandey A. K. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal. 2013;2013:16. doi: 10.1155/2013/162750.162750
    1. Kim Y. S., Young M. R., Bobe G., Colburn N. H., Milner J. A. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prevention Research. 2009;2(3):200–208. doi: 10.1158/1940-6207.CAPR-08-0141.
    1. Berlett B. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry. 1997;272(33):20313–20316. doi: 10.1074/jbc.272.33.20313.
    1. Salzanoa S., Checconia P., Hanschmannc E. M., et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proceeding of National Academy of Sciences of United States of America. 2014;111(33):12157–12162.
    1. Popa-Wagner A., Mitran S., Sivanesan S., Chang E., Buga A.-M. ROS and brain diseases: the good, the bad, and the ugly. Oxidative Medicine and Cellular Longevity. 2013;2013:14. doi: 10.1155/2013/963520.963520
    1. Ghezzi P. Role of glutathione in immunity and inflammation in the lung. International Journal of General Medicine. 2011;4:105–113. doi: 10.2147/IJGM.S15618.
    1. Ghezzi P. Protein glutathionylation in health and disease. Biochimica et Biophysica Acta—General Subjects. 2013;1830(5):3165–3172. doi: 10.1016/j.bbagen.2013.02.009.
    1. Fratelli M., Demol H., Puype M., et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(6):3505–3510. doi: 10.1073/pnas.052592699.
    1. Reagan L. P., Magariños A. M., McEwen B. S. Neurological changes induced by stress in streptozotocin diabetic rats. Annals of the New York Academy of Sciences. 1999;893:126–137. doi: 10.1111/j.1749-6632.1999.tb07822.x.
    1. Acar A., Akil E., Alp H., et al. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats. International Journal of Neuroscience. 2012;122(7):367–372. doi: 10.3109/00207454.2012.657380.
    1. Prabhakar O. Cerebroprotective effect of resveratrol through antioxidant and anti-inflammatory effects in diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology. 2013;386(8):705–710. doi: 10.1007/s00210-013-0871-2.
    1. Khan R. A. Protective effect of Launaea procumbens (L.) on lungs against CCl4-induced pulmonary damages in rat. BMC Complementary and Alternative Medicine. 2012;12, article 133 doi: 10.1186/1472-6882-12-133.
    1. Herranz-López M., Barrajón-Catalán E., Segura-Carretero A., Menéndez J. A., Joven J., Micol V. Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms. Phytomedicine. 2015;22(6):605–614. doi: 10.1016/j.phymed.2015.03.015.
    1. Spencer J. P. E., Abd El Mohsen M. M., Minihane A.-M., Mathers J. C. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition. 2008;99(1):12–22. doi: 10.1017/s0007114507798938.
    1. Beecher G. R. Overview of dietary flavonoids: nomenclature, occurrence and intake. Journal of Nutrition. 2003;133(10):3248S–3254S.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition. 2004;79(5):727–747.
    1. Pandey K. B., Rizvi S. I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2(5):270–278. doi: 10.4161/oxim.2.5.9498.
    1. Tanigawa S., Fujii M., Hou D.-X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radical Biology and Medicine. 2007;42(11):1690–1703. doi: 10.1016/j.freeradbiomed.2007.02.017.
    1. Cardozo L. F. M. F., Pedruzzi L. M., Stenvinkel P., et al. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie. 2013;95(8):1525–1533. doi: 10.1016/j.biochi.2013.04.012.
    1. Macheix J. J., Fleuriet A., Billot J. Fruit Phenolics. Boca Raton, Fla, USA: CRC Press; 1990.
    1. D'Archivio M., Filesi C., Di Benedetto R., Gargiulo R., Giovannini C., Masella R. Polyphenols, dietary sources and bioavailability. Annali dell'Istituto Superiore di Sanità. 2007;43(4):348–361.
    1. Possemiers S., Bolca S., Verstraete W., Heyerick A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011;82(1):53–66. doi: 10.1016/j.fitote.2010.07.012.
    1. Willcox J. K., Ash S. L., Catignani G. L. Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition. 2004;44(4):275–295. doi: 10.1080/10408690490468489.
    1. Heim K. E., Tagliaferro A. R., Bobilya D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry. 2002;13(10):572–584. doi: 10.1016/s0955-2863(02)00208-5.
    1. Mishra A., Sharma A. K., Kumar S., Saxena A. K., Pandey A. K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Research International. 2013;2013:10. doi: 10.1155/2013/915436.915436
    1. Kumar S., Sharma U. K., Sharma A. K., Pandey A. K. Protective efficacy of Solanum xanthocarpum root extracts against free radical damage: phytochemical analysis and antioxidant effect. Cellular and Molecular Biology. 2012;58(1):174–181. doi: 10.1170/t938.
    1. Mishra A., Kumar S., Pandey A. K. Scientific validation of the medicinal efficacy of Tinospora cordifolia . The Scientific World Journal. 2013;2013:8. doi: 10.1155/2013/292934.292934
    1. Oteiza P. I., Erlejman A. G., Verstraeten S. V., Keen C. L., Fraga C. G. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clinical and Developmental Immunology. 2005;12(1):19–25. doi: 10.1080/10446670410001722168.
    1. Nijveldt R. J., van Nood E., Van Hoorn D. E. C., Boelens P. G., van Norren K., van Leeuwen P. A. M. Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition. 2001;74(4):418–425.
    1. Cheon B. S., Kim Y. H., Son K. S., Chang H. W., Kang S. S., Kim H. P. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Medica. 2000;66(7):596–600. doi: 10.1055/s-2000-8621.
    1. Sarkar A., Bhaduri A. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochemical and Biophysical Research Communications. 2001;284(1):173–178. doi: 10.1006/bbrc.2001.4944.
    1. Hong J., Smith T. J., Ho C.-T., August D. A., Yang C. S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochemical Pharmacology. 2001;62(9):1175–1183. doi: 10.1016/S0006-2952(01)00767-5.
    1. Nagao A., Seki M., Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Bioscience, Biotechnology and Biochemistry. 1999;63(10):1787–1790. doi: 10.1271/bbb.63.1787.
    1. Rotelli A. E., Guardia T., Juárez A. O., De La Rocha N. E., Pelzer L. E. Comparative study of flavonoids in experimental models of inflammation. Pharmacological Research. 2003;48(6):601–606. doi: 10.1016/S1043-6618(03)00225-1.
    1. Paradkar P. N., Blum P. S., Berhow M. A., Baumann H., Kuo S.-M. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Letters. 2004;215(1):21–28. doi: 10.1016/j.canlet.2004.05.019.
    1. Campbell M. A., Sefton C. M. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. European Molecular Biology Organization, Journal. 1999;9(7):2125–2131.
    1. Akiyama T., Ishida J., Nakagawa S., et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of Biological Chemistry. 1987;262(12):5592–5595.
    1. Tordera M., Ferrandiz M. L., Alcaraz M. J. Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Zeitschrift fur Naturforschung Section C. 1994;49(3-4):235–240.
    1. Santangelo C., Varì R., Scazzocchio B., Di Benedetto R., Filesi C., Masella R. Polyphenols, intracellular signalling and inflammation. Annali dell'Istituto Superiore di Sanita. 2007;43(4):394–405.
    1. Sosa V., Moliné T., Somoza R., Paciucci R., Kondoh H. E., LLeonart M. E. Oxidative stress and cancer: an overview. Ageing Research Reviews. 2013;12(1):376–390. doi: 10.1016/j.arr.2012.10.004.
    1. Pollard M., Suckow M. A. Dietary prevention of hormone refractory prostate cancer in Lobund-Wistar rats: a review of studies in a relevant animal model. Comparative Medicine. 2006;56(6):461–467.
    1. Arts I. C. W., Jacobs D. R., Jr., Harnack L. J., Gross M., Folsom A. R. Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology. 2001;12(6):668–675. doi: 10.1097/00001648-200111000-00015.
    1. Yochum L., Kushi L. H., Meyer K., Folsom A. R. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. American Journal of Epidemiology. 1999;149(10):943–949. doi: 10.1093/oxfordjournals.aje.a009738.
    1. Peters U., Poole C., Arab L. Does tea affect cardiovascular disease? A meta-analysis. American Journal of Epidemiology. 2001;154(6):495–503. doi: 10.1093/aje/154.6.495.
    1. Di Castelnuovo A., Rotondo S., Iacoviello L., Donati M. B., De Gaetano G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation. 2002;105(24):2836–2844. doi: 10.1161/01.CIR.0000018653.19696.01.
    1. Hooper L., Kroon P. A., Rimm E. B., et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition. 2008;88(1):38–50.
    1. Heiss C., Dejam A., Kleinbongard P., Schewe T., Sies H., Kelm M. Vascular effects of cocoa rich in flavan-3-ols. The Journal of the American Medical Association. 2003;290(8):1030–1031. doi: 10.1001/jama.290.8.1030.
    1. Appeldoorn M. M., Venema D. P., Peters T. H. F., et al. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. Journal of Agricultural and Food Chemistry. 2009;57(17):7693–7699. doi: 10.1021/jf901381x.
    1. Lorenz M., Wessler S., Follmann E., et al. Constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. Journal of Biological Chemistry. 2004;279:6190–6195. doi: 10.1074/jbc.m309114200.
    1. Stoclet J.-C., Chataigneau T., Ndiaye M., et al. Vascular protection by dietary polyphenols. European Journal of Pharmacology. 2004;500(1–3):299–313. doi: 10.1016/j.ejphar.2004.07.034.
    1. Peppa M., Raptis S. A. Advanced glycation end products and cardiovascular disease. Current Diabetes Reviews. 2008;4(2):92–100. doi: 10.2174/157339908784220732.
    1. Huang S.-M., Wu C.-H., Yen G.-C. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Molecular Nutrition and Food Research. 2006;50(12):1129–1139. doi: 10.1002/mnfr.200600075.
    1. Kim J. M., Lee E. K., Kim D. H., Yu B. P., Chung H. Y. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age. 2010;32(2):197–208. doi: 10.1007/s11357-009-9124-1.
    1. Lindsay J., Laurin D., Verreault R., et al. Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. American Journal of Epidemiology. 2002;156(5):445–453. doi: 10.1093/aje/kwf074.
    1. Truelsen T., Thudium D., Grønbæk M. Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology. 2002;59(9):1313–1319. doi: 10.1212/01.wnl.0000031421.50369.e7.
    1. Commenges D., Scotet V., Renaud S., Jacqmin-Gadda H., Barberger-Gateau P., Dartigues J.-F. Intake of flavonoids and risk of dementia. European Journal of Epidemiology. 2000;16(4):357–363. doi: 10.1023/a:1007614613771.
    1. Morris M. C., Evans D. A., Tangney C. C., Bienias J. L., Wilson R. S. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology. 2006;67(8):1370–1376. doi: 10.1212/01.wnl.0000240224.38978.d8.
    1. Dai Q., Borenstein A. R., Wu Y., Jackson J. C., Larson E. B. Fruit and vegetable juices and Alzheimer's disease: The Kame Project. American Journal of Medicine. 2006;119(9):751–759. doi: 10.1016/j.amjmed.2006.03.045.
    1. Checkoway H., Powers K., Smith-Weller T., Franklin G. M., Longstreth W. T., Jr., Swanson P. D. Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. American Journal of Epidemiology. 2002;155(8):732–738. doi: 10.1093/aje/155.8.732.
    1. Vauzour D., Vafeiadou K., Rice-Evans C., Williams R. J., Spencer J. P. E. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. Journal of Neurochemistry. 2007;103(4):1355–1367. doi: 10.1111/j.1471-4159.2007.04841.x.
    1. Vafeiadou K., Vauzour D., Lee H. Y., Rodriguez-Mateos A., Williams R. J., Spencer J. P. E. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Archives of Biochemistry and Biophysics. 2009;484(1):100–109. doi: 10.1016/j.abb.2009.01.016.
    1. Wang X., Chen S., Ma G., Ye M., Lu G. Genistein protects dopaminergic neurons by inhibiting microglial activation. NeuroReport. 2005;16(3):267–270. doi: 10.1097/00001756-200502280-00013.
    1. Bhat N. R., Feinstein D. L., Shen Q., Bhat A. N. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells: roles of nuclear factors, nuclear factor κB, cAMP response element-binding protein, CCAAT/enhancer-binding protein-β, and activating transcription factor-2. The Journal of Biological Chemistry. 2002;277(33):29584–29592. doi: 10.1074/jbc.m204994200.
    1. Lee S.-J., Lee K.-W. Protective effect of (−)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells. Biological and Pharmaceutical Bulletin. 2007;30(8):1369–1373. doi: 10.1248/bpb.30.1369.
    1. Kuriyama S., Shimazu T., Ohmori K., et al. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan, the Ohsaki study. The Journal of the American Medical Association. 2006;296(10):1255–1265. doi: 10.1001/jama.296.10.1255.
    1. Martínez M. E. Primary prevention of colorectal cancer: lifestyle, nutrition, exercise. Recent Results in Cancer Research. 2005;166:177–211.
    1. Takada M., Ku Y., Habara K., Ajiki T., Suzuki Y., Kuroda Y. Inhibitory effect of epigallocatechin-3-gallate on growth and invasion in human biliary tract carcinoma cells. World Journal of Surgery. 2002;26(6):683–686. doi: 10.1007/s00268-001-0290-2.
    1. Rieger-Christ K. M., Hanley R., Lodowsky C., et al. The green tea compound, (−)-epigallocatechin-3-gallate downregulates N-cadherin and suppresses migration of bladder carcinoma cells. Journal of Cellular Biochemistry. 2007;102(2):377–388. doi: 10.1002/jcb.21299.
    1. Leong H., Mathur P. S., Greene G. L. Inhibition of mammary tumorigenesis in the C3(1)/SV40 mouse model by green tea. Breast Cancer Research and Treatment. 2008;107(3):359–369. doi: 10.1007/s10549-007-9568-x.
    1. Larsen C. A., Dashwood R. H. Suppression of Met activation in human colon cancer cells treated with (−)-epigallocatechin-3-gallate: minor role of hydrogen peroxide. Biochemical and Biophysical Research Communications. 2009;389(3):527–530. doi: 10.1016/j.bbrc.2009.09.019.
    1. Owen R. W., Giacosa A., Hull W. E., Haubner R., Spiegelhalder B., Bartsch H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer. 2000;36(10):1235–1247. doi: 10.1016/S0959-8049(00)00103-9.
    1. Khan N., Afaq F., Saleem M., Ahmad N., Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Research. 2006;66(5):2500–2505. doi: 10.1158/0008-5472.can-05-3636.
    1. Corona G., Deiana M., Incani A., Vauzour D., Dessià M. A., Spencer J. P. E. Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Molecular Nutrition and Food Research. 2009;53(7):897–903. doi: 10.1002/mnfr.200800269.
    1. Mantena S. K., Baliga M. S., Katiyar S. K. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis. 2006;27(8):1682–1691. doi: 10.1093/carcin/bgl030.
    1. Adam L. S., Chen S. Phytochemicals for breast cancer prevention by targeting aromatase. Frontiers in Bioscience. 2009;14(10):3846–3863. doi: 10.2735/3493.
    1. Middleton E. Implications for inflammation, heart disease, and cancer. Pharmacological Reviews. 2000;52:673–751.
    1. Duthie S. J., Dobson V. L. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. European Journal of Nutrition. 1999;38(1):28–34. doi: 10.1007/s003940050043.
    1. Calomme M., Pieters L., Vlietinck A., Berghe D. V. Inhibition of bacterial mutagenesis by Citrus flavonoids. Planta Medica. 1996;62(3):222–226. doi: 10.1055/s-2006-957864.

Source: PubMed

3
Sottoscrivi