Potential targeting of FLT3 acute myeloid leukemia

Alexander J Ambinder, Mark Levis, Alexander J Ambinder, Mark Levis

Abstract

Aberrant FLT3 receptor signaling is common in acute myeloid leukemia (AML) and has important implications for the biology and clinical management of the disease. Patients with FLT3-mutated AML frequently present with critical illness, are more likely to relapse after treatment, and have worse clinical outcomes than their FLT3 wild type counterparts. The clinical management of FLT3-mutated AML has been transformed by the development of FLT3 inhibitors, which are now in use in the frontline and relapsed/refractory settings. However, many questions regarding the optimal approach to the treatment of these patients remain. In this paper, we will review the rationale for targeting the FLT3 receptor in AML, the impact of FLT3 mutation on patient prognosis, the current standard of care approaches to FLT3-mutated AML management, and the diverse array of FLT3 inhibitors in use and under investigation. We will also explore new opportunities and strategies for targeting the FLT3 receptor. These include targeting the receptor in patients with non-canonical FLT3 mutations or wild type FLT3, pairing FLT3 inhibitors with other novel therapies, using minimal residual disease (MRD) testing to guide the targeting of FLT3, and novel immunotherapeutic approaches.

References

    1. Van Der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Ann Rev Cell Biol. 1994;10251-10337.
    1. Beaudin AE, Boyer SW, Forsberg EC. Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-selfrenewing multipotent hematopoietic progenitor cells. Exp Hematol. 2014;42(3):218-229.e4.
    1. Papaemmanuil E, Gerstung M, Bullinger L, et al. . Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
    1. Dosil M, Wang S, Lemischka IR. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol. 1993;13(10):6572-6585.
    1. Rosnet O, Bühring HJ, De Lapeyriére O, et al. . Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol. 1996;95(3-4):218-223.
    1. Tsapogas P, Mooney CJ, Brown G, Rolink A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int J Mol Sci. 2017;18(6):1115.
    1. Thiede C, Steudel C, Mohr B, et al. . Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326-4335.
    1. Schnittger S, Schoch C, Dugas M, et al. . Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100(1):59-66.
    1. Heidel F, Solem FK, Breitenbuecher F, et al. . Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood. 2006;107(1):293-300.
    1. Fröhling S, Scholl C, Levine RL, et al. . Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell. 2007;12(6): 501-513.
    1. Fiskus W, Sharma S, Qi J, et al. . BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther. 2014;13(10):2315-2327.
    1. Carow CE, Levenstein M, Kaufmann SH, et al. . Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996;87(3):1089-1096.
    1. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-1542.
    1. Kuchenbauer F, Kern W, Schoch C, et al. . Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica. 2005;90(12):1617-1625.
    1. Tarlock K, Alonzo TA, Loken MR, et al. . Disease characteristics and prognostic implications of cell-surface FLT3 receptor (CD135) expression in pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Clin Cancer Res. 2017;23(14):3649-3656.
    1. Cheng J, Qu L, Wang J, Cheng L, Wang Y. High expression of FLT3 is a risk factor in leukemia. Mol Med Rep. 2018;17(2):2885-2892.
    1. Kandeel EZ, El Sayed G, Elsharkawy N, et al. . Impact of FLT3 receptor (CD135) Detection by Flow Cytometry on Clinical Outcome of Adult Acute Myeloid leukemia patients. Clin Lymphoma Myeloma Leuk. 2018;18(8):541-547.
    1. Daver N, Strati P, Jabbour E, et al. . FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88(1):56-59.
    1. Rosenzwajg M, Camus S, Guigon M, Gluckman JC. The influence of interleukin (IL)-4, IL-13, and Flt3 ligand on human dendritic cell differentiation from cord blood CD34+ progenitor cells. Exp Hematol. 1998;26(1):63-72.
    1. McKenna HJ, Stocking KL, Miller RE, et al. . Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95(11):3489-3497.
    1. Levis M. FLT3/ITD AML and the law of unintended consequences. Blood. 2011;117(26):6987-6990.
    1. Stone RM, Mandrekar SJ, Sanford BL, et al. . Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454-464.
    1. Döhner K, Thiede C, Jahn N, et al. . Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood. 2020;135(5):371-380.
    1. Chyla BJ, Harb J, Mantis C, et al. . Response to venetoclax in combination with low intensity therapy (LDAC or HMA) in untreated patients with acute myeloid leukemia patients with IDH, FLT3 and other mutations and correlations with BCL2 family expression. Blood. 2019;134 (Supplement_1):546-546.
    1. DiNardo CD, Tiong IS, Quaglieri A, et al. . Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135(11):791-803.
    1. Ravandi F, Alattar ML, Grunwald MR, et al. . Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121(23):4655-4662.
    1. National Comprehensive Cancer Network. Acute Myeloid Leukemia (Version 3.2020 - December 23, 2019). Available from: (Last accessed June 16, 2020).
    1. Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010;115(7):1425-1432.
    1. Ding L, Ley TJ, Larson DE, et al. . Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506-510.
    1. Döhner H, Estey E, Grimwade D, et al. . Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.
    1. Meshinchi S, Arceci RJ, Sanders JE, et al. . Role of allogeneic stem cell transplantation in FLT3/ITD-positive AML. Blood. 2006;108(1):400.
    1. DeZern AE, Sung A, Kim S, et al. . Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: Outcomes from 133 consecutive newly diagnosed patients from a single institution. Biol Blood Marrow Transplant. 2011;17(9):1404-1409.
    1. Koreth J, Schlenk R, Kopecky KJ, et al. . Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and metaanalysis of prospective clinical trials. JAMA. 2009;301(22):2349-2361.
    1. Schlenk RF, Kayser S, Bullinger L, et al. . Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441-3449.
    1. Oran B, Cortes J, Beitinjaneh A, et al. . Allogeneic transplantation in first remission improves outcomes irrespective of FLT3- ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol Blood Marrow Transplant. 2016;22(7):1218-1226.
    1. Gaballa S, Saliba R, Oran B, et al. . Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. Am J Hematol. 2017;92(4):331-337.
    1. Kayser S, Schlenk RF, Londono MC, et al. . Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 2009;114(12):2386-2392.
    1. Breitenbuecher F, Schnittger S, Grundler R, et al. . Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood. 2009;113(17):4074-4077.
    1. Griffith J, Black J, Faerman C, et al. . The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13(2):169-178.
    1. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. . Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood. 2006;107(9):3724-3726.
    1. Chen F, Sun J, Yin C, et al. . Impact of FLT3- ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation. Bone Marrow Transplant. 2020;55(4):740-748.
    1. Schwartz GW, Manning B, Zhou Y, et al. . Classes of ITD predict outcomes in AML patients treated with FLT3 inhibitors. Clin Cancer Res. 2019;25(2):572-583.
    1. Liu SB, Dong HJ, Bao XB, et al. . Impact of FLT3-ITD length on prognosis of acute myeloid leukemia. Haematologica. 2019;104(1):e9-e12.
    1. Murphy KM, Levis M, Hafez MJ, et al. . Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagnostics. 2003;5(2):96-102.
    1. Polz MF, Cavanaugh CM. Bias in templateto- product ratios in multitemplate PCR. Appl Environ Microbiol. 1998;64(10)3724-3730.
    1. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-2074.
    1. Guryanova OA, Shank K, Spitzer B, et al. . DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488-1495.
    1. Garg S, Reyes-Palomares A, He L, et al. . Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood. 2019;134(3):263-276.
    1. Burchert A, Bug G, Finke J, et al. . Sorafenib as maintenance therapy post allogeneic stem cell transplantation for FLT3-ITD positive AML: results from the randomized, doubleblind, placebo-controlled multicentre Sormain trial. Blood. 2018;132(Supplement 1):661.
    1. Maziarz RT, Fernandez H, Patnaik MM, et al. . Radius: midostaurin (mido) plus standard of care (SOC) after allogeneic stem cell transplant (alloSCT) in patients (pts) with FLT3- internal tandem duplication (ITD)-mutated acute myeloid leukemia (AML). Biol Blood Marrow Transplant. 2019;25(3):S11-S12.
    1. Perl AE, Martinelli G, Cortes JE, et al. . Gilteritinib or chemotherapy for relapsed or refractory FLT3 -mutated AML. N Engl J Med. 2019;381(18):1728-1740.
    1. Smith CC, Paguirigan A, Jeschke GR, et al. . Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by singlecell analysis. Blood. 2017;130(1):48-58.
    1. Levis M, Brown P, Smith BD, et al. . Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108(10):3477-3483.
    1. Pratz KW, Cortes J, Roboz GJ, et al. . A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17):3938-3946.
    1. Lee LY, Hernandez D, Rajkhowa T, et al. . Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood. 2017;129(2):257-260.
    1. Levis M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Futur Oncol. 2014;10(9):1571-1579.
    1. O’Farrell AM, Foran JM, Fiedler W, et al. . An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res. 2003;9(15):5465-5476.
    1. Smith BD, Levis M, Beran M, et al. . Singleagent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10): 3669-3676.
    1. Röllig C, Serve H, Hüttmann A, et al. . Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691-1699.
    1. Rydapt [package insert]. East Hanover, NJ. Novartis Pharmaceuticals Corporation. 2017. .
    1. Stone RM, DeAngelo DJ, Klimek V, et al. . Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54-60.
    1. Fischer T, Stone RM, DeAngelo DJ, et al. . Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339-4345.
    1. Levis M, Shi W, Chang K, et al. . FLT3 inhibitors added to induction therapy induce deeper remissions. Blood. 2020;135(1):75-78.
    1. Perl AE, Altman JK, Cortes J, et al. . Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18(8): 1061-1075.
    1. MacMahon CM, Canaani J, Rea B, et al. . Mechanisms of acquired resistance to gilteritinib therapy in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood. 2017;130(Supplement 1):295-295.
    1. Cortes JE, Khaled S, Martinelli G, et al. . Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):984-997.
    1. Cortes JE, Kantarjian HM, Kadia TM, et al. . Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML. J Clin Oncol. 2016;34(15_suppl):7008.
    1. Galanis A, Ma H, Rajkhowa T, et al. . Crenolanib is a potent inhibitor of flt3 with activity against resistance-Conferring point mutants. Blood. 2014;123(1):94-100.
    1. Zhang H, Savage S, Schultz AR, et al. . Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun. 2019;10(1):244.
    1. Goldberg AD, Coombs CC, Wang ES, et al. . Younger patients with newly diagnosed FLT3-mutant AML treated with crenolanib plus chemotherapy achieve adequate free crenolanib levels and durable remissions. Blood. 2019;134(Supplement_1):1326.
    1. Yamaura T, Nakatani T, Uda K, et al. . A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood. 2018;131(4):426-438.
    1. Sato T, Yang X, Knapper S, et al. . FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood. 2011;117(12):3286-3293.
    1. Ueno Y, Mori M, Kamiyama Y, Kaneko N, Isshiki E, Takeuchi M. Gilteritinib (ASP2215), a Novel FLT3/AXL Inhibitor: Preclinical Evaluation in Combination with Azacitidine in Acute Myeloid Leukemia. Blood. 2016;128(22):2830-2830.
    1. Swaminathan M, Kantarjian HM, Daver N, et al. . The combination of quizartinib with azacitidine or low-dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood. 2017;130 (Supplement 1):723.
    1. Ma J, Zhao S, Qiao X, et al. . Inhibition of Bcl- 2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia. Clin Cancer Res. 2019;25(22):6815-6826.
    1. Perl AE, Daver NG, Pratz KW, et al. . Venetoclax in combination with gilteritinib in patients with relapsed/refractory acute myeloid leukemia: a phase 1b study. Blood. 2019;134(Supplement_1):3910.
    1. Breccia M, Loglisci G, Loglisci MG, et al. . FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica. 2013;98(12):e161.
    1. Daver N, Kantarjian H, Marcucci G, et al. . Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis. Br J Haematol. 2015;168(5):646-653.
    1. Esnault C, Rahmé R, Rice KL, et al. . FLT3- ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. Blood. 2019;133(13):1495-1506.
    1. Taylor SJ, Dagger SA, Thien CBF, Wikstrom ME, Langdon WY. Flt3 inhibitor AC220 is a potent therapy in a mouse model of myeloproliferative disease driven by enhanced wild-type Flt3 signaling. Blood. 2012;120(19):4049-4057.
    1. Cortes J, Perl AE, Döhner H, et al. . Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018;19(7):889-903.
    1. Schuurhuis GJ, Heuser M, Freeman S, et al. . Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275-1291.
    1. Bibault JE, Figeac M, Hélevaut N, et al. . Nextgeneration sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia. Oncotarget. 2015;6(26):22812-22821.
    1. Thol F, Gabdoulline R, Liebich A, et al. . Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132(16):1703-1713.
    1. Levis MJ, Perl AE, Altman JK, et al. . A nextgeneration sequencing–based assay for minimal residual disease assessment in AML patients with FLT3 -ITD mutations. Blood Adv. 2018;2(8):825-831.
    1. Blätte TJ, Schmalbrock LK, Skambraks S, et al. . getITD for FLT3-ITD-based MRD monitoring in AML. Leukemia. 2019;33(10):2535-2539.
    1. Rudra-Ganguly N, Lowe C, Virata C, et al. . AGS62P1, a novel anti-FLT3 antibody drug conjugate, employing site specific conjugation, demonstrates preclinical antitumor efficacy in AML tumor and patient derived xenografts. Blood. 2015;126(23): 3806-3806.
    1. Yeung YA, Krishnamoorthy V, Dettling D, et al. . An pptimized full-length FLT3/CD3 bispecific antibody demonstrates potent anti-leukemia activity and reversible hematological toxicity. Mol Ther. 2020;28(3):889-900.
    1. Reiter K, Polzer H, Krupka C, et al. . Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 2018;32(2): 313-322.
    1. Reindl C, Bagrintseva K, Vempati S, et al. . Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood. 2006;107(9):3700-3707.
    1. Ma HS, Nguyen B, Duffield AS, et al. . FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia. Cancer Res. 2014;74(18):5206-5217.
    1. Stirewalt DL, Meshinchi S, Kussick SJ, et al. . Novel FLT3 point mutations within exon 14 found in patients with acute myeloid leukaemia. Br J Haematol. 2004;124(4):481-484.
    1. Chatain N, Perera RC, Rossetti G, et al. . Rare FLT3 deletion mutants may provide additional treatment options to patients with AML: an approach to individualized medicine. Leukemia. 2015;29(12):2434-2438.
    1. Williams AB, Nguyen B, Li L, et al. . Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia. 2013;27(1):48-55.
    1. Smith CC, Zhang C, Lin KC, et al. . Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “Gatekeeper” F691L mutation with PLX3397. Cancer Discov. 2016;5(6):668-679.
    1. Opatz S, Polzer H, Herold T, et al. . Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. Blood. 2013;122(10):1761-1769.
    1. Pauwels D, Sweron B, Cools J. The N676D and G697R mutations in the kinase domain of FLT3 confer resistance to the inhibitor AC220. Haematologica. 2012;97(11):1773-1774.
    1. Piccaluga PP, Bianchini M, Martinelli G. Novel FLT3 point mutation in acute myeloid leukaemia. Lancet Oncol. 2003;4(10):604.
    1. Albers C, Leischner H, Verbeek M, et al. . The secondary FLT3-ITD F691L mutation induces resistance to AC220 in FLT3-ITD + AML but retains in vitro sensitivity to PKC412 and Sunitinib. Leukemia. 2013;27(6):1416-1418.
    1. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113(4):983-988.
    1. Yamamoto Y, Kiyoi H, Nakano Y, et al. . Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434-2439.
    1. Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S. A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood. 2002;100(9):3423-3425.
    1. Jiang J, Paez JG, Lee JC, et al. . Identifying and characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood. 2004;104(6):1855-1858.
    1. Matsuno N, Nanri T, Kawakita T, Mitsuya H, Asou N. A novel FLT3 activation loop mutation N841K in acute myeloblastic leukemia. Leukemia. 2005;19(3):480-481.
    1. Schittenhelm MM, Yee KWH, Tyner JW, et al. . FLT3 K663Q is a novel AML-associated oncogenic kinase: determination of biochemical properties and sensitivity to sunitinib (SU11248). Leukemia. 2006;20(11): 2008-2014.
    1. Kindler T, Breitenbuecher F, Kasper S, et al. . Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood. 2005;105(1):335-340.
    1. Smith CC, Wang Q, Chin CS, et al. . Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260-263.

Source: PubMed

3
Sottoscrivi