Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing

Man Kit Cheung, Wai Yip Lam, Wendy Yin Wan Fung, Patrick Tik Wan Law, Chun Hang Au, Wenyan Nong, Kai Man Kam, Hoi Shan Kwan, Stephen Kwok Wing Tsui, Man Kit Cheung, Wai Yip Lam, Wendy Yin Wan Fung, Patrick Tik Wan Law, Chun Hang Au, Wenyan Nong, Kai Man Kam, Hoi Shan Kwan, Stephen Kwok Wing Tsui

Abstract

Background: Tuberculosis (TB) remains a global threat in the 21st century. Traditional studies of the disease are focused on the single pathogen Mycobacterium tuberculosis. Recent studies have revealed associations of some diseases with an imbalance in the microbial community. Characterization of the TB microbiota could allow a better understanding of the disease.

Methodology/principal findings: Here, the sputum microbiota in TB infection was examined by using 16S rRNA pyrosequencing. A total of 829,873 high-quality sequencing reads were generated from 22 TB and 14 control sputum samples. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were the five major bacterial phyla recovered, which together composed over 98% of the microbial community. Proteobacteria and Bacteroidetes were more represented in the TB samples and Firmicutes was more predominant in the controls. Sixteen major bacterial genera were recovered. Streptococcus, Neisseria and Prevotella were the most predominant genera, which were dominated by several operational taxonomic units grouped at a 97% similarity level. Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Streptococcus, and Veillonella were found in all TB samples, possibly representing the core genera in TB sputum microbiota. The less represented genera Mogibacterium, Moryella and Oribacterium were enriched statistically in the TB samples, while a genus belonging to the unclassified Lactobacillales was enriched in the controls. The diversity of microbiota was similar in the TB and control samples.

Conclusions/significance: The composition and diversity of sputum microbiota in TB infection was characterized for the first time by using high-throughput pyrosequencing. It lays the framework for examination of potential roles played by the diverse microbiota in TB pathogenesis and progression, and could ultimately facilitate advances in TB treatment.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Relative abundance of dominant bacterial…
Figure 1. Relative abundance of dominant bacterial phyla in TB and control samples.
Only phyla >1% in either group were included.
Figure 2. Relative abundance of dominant bacterial…
Figure 2. Relative abundance of dominant bacterial phyla in all individuals under study.
Only phyla >1% in either group were included. The 22 samples on the left were from the TB patients, and the 14 samples on the right were from the control group.
Figure 3. PCoA plots of TB and…
Figure 3. PCoA plots of TB and control samples.
The plots were based on a) weighted and b) unweighted UniFrac distances. The two principal coordinates combined explained 66.44% and 24.31% of the variations in the weighted and unweighted cases, respectively. Red dots represent TB samples; blue dots represent control samples.
Figure 4. Relative abundance of dominant bacterial…
Figure 4. Relative abundance of dominant bacterial genera in TB and control samples.
Only genera >1% in either group were included.
Figure 5. Prevalence of dominant bacterial genera…
Figure 5. Prevalence of dominant bacterial genera in TB (n = 22) and control (n = 14) samples.
Only genera >1% in either group were included.
Figure 6. Relative abundance of dominant bacterial…
Figure 6. Relative abundance of dominant bacterial genera in all individuals under study.
Only genera >1% in either group were included. The 22 samples on the left were from the TB patients, and the 14 samples on the right were from the control group.

References

    1. WHO (2011) Global tuberculosis control: WHO report 2011. Available: . Accessed 2012 Oct 24.
    1. Young DB, Perkins MD, Duncan K, Barry CE 3rd (2008) Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 118: 1255–1265.
    1. Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5: e1000600.
    1. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258–1270.
    1. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.
    1. Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J 6: 1058–1077.
    1. Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4: 1053–1059.
    1. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, et al. (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141: 1782–1791.
    1. Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, et al. (2012) Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol 194: 4709–4717.
    1. Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, et al. (2011) Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J 5: 20–29.
    1. Cabrera-Rubio R, Garcia-Núñez M, Setó L, Antó JM, Moya A, et al. (2012) Microbiome diversity in the bronchial tract of patients with chronic obstructive pulmonary disease. J Clin Microbiol 50: 3562–3568.
    1. Zhou Y, Lin P, Li Q, Han L, Zheng H, et al. (2010) Analysis of the microbiota of sputum samples from patients with lower respiratory tract infections. Acta Biochim Biophys Sin (Shanghai) 42: 754–76.
    1. Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, et al. (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 106: 16393–16399.
    1. You M, Mo S, Watt RM, Leung WK Prevalence and diversity of Synergistetes taxa in periodontal health and disease. J Periodontal Res. In press.
    1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, et al. (2010) The human oral microbiome. J Bacteriol 192: 5002–5017.
    1. Stop TB Partnership (2011) The global plan to stop TB 2011–2015. Available: . Accessed 2012 Oct 24.
    1. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9: 279–290.
    1. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, et al. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1: 6ra14.
    1. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13: 260–270.
    1. Beck JM, Young VB, Huffnagle GB (2012) The microbiome of the lung. Transl Res 160: 258–266.
    1. Vignesh R, Balakrishnan P, Shankar EM, Murugavel KG, Hanas S, et al. (2007) Value of single acid-fast bacilli sputum smears in the diagnosis of tuberculosis in HIV-positive subjects. J Med Microbiol 56: 1709–1710.
    1. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, et al. (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A 109: 5809–5814.
    1. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73: 407–450.
    1. Brigham KS, Sandora TJ (2009) Neisseria meningitidis: epidemiology, treatment and prevention in adolescents. Curr Opin Pediatr 21: 437–443.
    1. Field TR, Sibley CD, Parkins MD, Rabin HR, Surette MG (2010) The genus Prevotella in cystic fibrosis airways. Anaerobe 16: 337–344.
    1. Mitchell J (2011) Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 26: 89–98.
    1. Denapaite D, Brückner R, Nuhn M, Reichmann P, Henrich B, et al. (2010) The genome of Streptococcus mitis B6 - what is a commensal? PLoS One 5: e9426.
    1. Eberhard J, Pietschmann R, Falk W, Jepsen S, Dommisch H (2009) The immune response of oral epithelial cells induced by single-species and complex naturally formed biofilms. Oral Microbiol Immunol 24: 325–330.
    1. Geng J, Chiu CH, Tang P, Chen Y, Shieh HR, et al. (2012) Complete genome and transcriptomes of Streptococcus parasanguinis FW213: phylogenic relations and potential virulence mechanisms. PLoS One 7: e34769.
    1. Han XY, Kamana M, Rolston KV (2006) Viridans streptococci isolated by culture from blood of cancer patients: clinical and microbiologic analysis of 50 cases. J Clin Microbiol 44: 160–165.
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
    1. Hill GB, Ayers OM, Kohan AP (1987) Characteristics and sites of infection of Eubacterium nodatum, Eubacterium timidum, Eubacterium brachy, and other asaccharolytic eubacteria. J Clin Microbiol 25: 1540–1545.
    1. Carlier JP, K’ouas G, Bonne I, Lozniewski A, Mory F (2004) Oribacterium sinus gen. nov., sp. nov., within the family ‘Lachnospiraceae’ (phylum Firmicutes). Int J Syst Evol Microbiol 54: 1611–1615.
    1. Carlier JP, K’ouas G, Han XY (2007) Moryella indoligenes gen. nov., sp. nov., an anaerobic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 57: 725–729.
    1. Haraldsson G, Meurman JH, Könönen E, Holbrook WP (2005) Properties of hemagglutination by Prevotella melaninogenica . Anaerobe 11: 285–289.
    1. Zhou FX, Chen L, Liu XW, Ouyang CH, Wu XP, et al. (2012) Lactobacillus crispatus M206119 exacerbates murine DSS-colitis by interfering with inflammatory responses. World J Gastroenterol 18: 2344–2356.
    1. Jacobs JA, Pietersen HG, Walenkamp GH, Stobberingh EE, Soeters PB (1994) Intervertebral infection caused by Streptococcus milleri. A case report. Clin Orthop Relat Res 302: 183–188.
    1. Rabuñal R, Corredoira J, Monte R, Coira A (2009) Co-infection by Streptococcus anginosus and Mycobacterium tuberculosis: three case reports. J Med Case Rep 3: 37.
    1. Murdoch DA, Shah HN (1999) Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb. nov. Anaerobe 5: 555–559.
    1. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, et al. (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53: 685–93.
    1. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, et al. (2011) Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 127: 372–381.
    1. Pédron T, Sansonetti P (2008) Commensals, bacterial pathogens and intestinal inflammation: an intriguing ménage à trois. Cell Host Microbe 3: 344–347.
    1. McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, et al. (2008) The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4: e20.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072.
    1. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228–8235.

Source: PubMed

3
Sottoscrivi